L(s) = 1 | + i·3-s + 7-s − 9-s − i·11-s − i·17-s − i·19-s + i·21-s − i·23-s − i·27-s − 29-s + i·31-s + 33-s − 37-s − i·41-s − i·43-s + ⋯ |
L(s) = 1 | + i·3-s + 7-s − 9-s − i·11-s − i·17-s − i·19-s + i·21-s − i·23-s − i·27-s − 29-s + i·31-s + 33-s − 37-s − i·41-s − i·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.749 - 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.749 - 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.531269330 - 0.5791910662i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.531269330 - 0.5791910662i\) |
\(L(1)\) |
\(\approx\) |
\(1.100013832 + 0.06848438428i\) |
\(L(1)\) |
\(\approx\) |
\(1.100013832 + 0.06848438428i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + T \) |
| 7 | \( 1 + iT \) |
| 11 | \( 1 \) |
| 17 | \( 1 \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 \) |
| 43 | \( 1 \) |
| 47 | \( 1 \) |
| 53 | \( 1 \) |
| 59 | \( 1 \) |
| 61 | \( 1 - iT \) |
| 67 | \( 1 \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 \) |
| 79 | \( 1 + iT \) |
| 83 | \( 1 \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.57093047059069494460845897380, −24.8221718637325501535007738182, −23.924356521253365573751054717850, −23.28483732561529762222143676266, −22.26681335469466282197931031303, −21.0016442956256747268902586197, −20.249267015804107636597031809740, −19.23058000310211323983564272828, −18.31947863672759484187227144458, −17.52625840492510481638412047217, −16.85152184843938587399304975386, −15.18455465276445182310407331726, −14.54031353009516741983625799848, −13.47429533610340444417105600670, −12.508845600997797267873568180617, −11.707209423099203064884647821381, −10.69399866622463628439822219813, −9.33721284235581223908088803519, −8.03237885382736404263470532171, −7.54672457164112666608106861351, −6.24555213591181888817993742124, −5.20950964770687709269784153104, −3.82346322631681364595739953600, −2.12809383581174961224316413218, −1.38458254153020742837683136599,
0.52613359841814474803149218489, 2.42628875686202208128203151567, 3.6582462784892471520852107554, 4.84088592193211925545893513168, 5.56452197319148322527485934678, 7.095329925411799514798548334213, 8.494502880575857814134002653453, 9.0550832755305850022499132907, 10.461127587090354492482843376416, 11.12807546322275273804934984286, 11.999950181950931539815185343607, 13.65949828872824639737074019796, 14.33030028095766132829822520307, 15.34148240801902485832963668027, 16.19646518687537598634424739343, 17.09889215197293621563151500781, 18.03623802960159572778775369296, 19.16445608678240506795977796913, 20.38645955132475285334021775807, 20.93474367388578343332252911870, 21.87148072165303221974442480728, 22.57758062388034668030820384918, 23.82553499755854667466557830876, 24.56287050508828012810801574824, 25.71029394874060362278721436067