L(s) = 1 | − i·5-s + (−0.866 − 0.5i)7-s + (−0.866 + 0.5i)11-s + (−0.866 − 0.5i)19-s + (−0.5 − 0.866i)23-s − 25-s + (−0.5 − 0.866i)29-s − i·31-s + (−0.5 + 0.866i)35-s + (−0.866 + 0.5i)37-s + (−0.866 + 0.5i)41-s + (−0.5 + 0.866i)43-s − i·47-s + (0.5 + 0.866i)49-s − 53-s + ⋯ |
L(s) = 1 | − i·5-s + (−0.866 − 0.5i)7-s + (−0.866 + 0.5i)11-s + (−0.866 − 0.5i)19-s + (−0.5 − 0.866i)23-s − 25-s + (−0.5 − 0.866i)29-s − i·31-s + (−0.5 + 0.866i)35-s + (−0.866 + 0.5i)37-s + (−0.866 + 0.5i)41-s + (−0.5 + 0.866i)43-s − i·47-s + (0.5 + 0.866i)49-s − 53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.884 + 0.466i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2652 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.884 + 0.466i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1273757423 + 0.03150767632i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1273757423 + 0.03150767632i\) |
\(L(1)\) |
\(\approx\) |
\(0.6377677559 - 0.2241477464i\) |
\(L(1)\) |
\(\approx\) |
\(0.6377677559 - 0.2241477464i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
good | 5 | \( 1 - iT \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.866 + 0.5i)T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 - iT \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (-0.866 + 0.5i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (-0.866 - 0.5i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 + (-0.866 - 0.5i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + (-0.866 - 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.03598783211132720656422091714, −18.4856223166689899091956836740, −17.88140407013283786872871194426, −16.956795934109501699423216317883, −16.11098977075124203945665810637, −15.55803283832662125052819765803, −14.95828849614637784908059129573, −14.06360849508790075853853038134, −13.4770478297807777506986131948, −12.64110021721731380691242882725, −11.98961908135764115107287906055, −11.05964542360714169578646331131, −10.40413544528599377601133687320, −9.91063325534940022523242471984, −8.87407091401358117237089734179, −8.23278013153807976862713976906, −7.19213509368478885882225792943, −6.70406806735979274675018694738, −5.75408677408281884252314056785, −5.30616953688067566464957837394, −3.82524408033559108559512777124, −3.33225992868683156830710836573, −2.52223339272559992728091976494, −1.69972470408218274119278270470, −0.04633080740245479219173090132,
0.378899752259786038372800975411, 1.643931643964609417870451834792, 2.506054995029136225328787255299, 3.52117341795938199737646929926, 4.46346853966606477845456140731, 4.906124400844452498417865529998, 6.04613261160623426984269741824, 6.58534122643867028908908494677, 7.716101204020324349443706061052, 8.165763928856318307930450509593, 9.17379275939920786150135347122, 9.77440133565256586567440523155, 10.42341008711838445029892100415, 11.31215726135162884245344606332, 12.27349247945933785488183616201, 12.889932758503343365418661299541, 13.26358400602736886284680667762, 14.07372924166354151833734320045, 15.212863341297644529291259286169, 15.65763105008117769950613954103, 16.47924309162762791395780326922, 16.9848072239542364471262717145, 17.634339053155385328630564735363, 18.61346275350798910626516676712, 19.24305029726219367969713489334