L(s) = 1 | + (−0.5 − 0.866i)5-s + 7-s + (0.5 + 0.866i)11-s + (−0.5 − 0.866i)13-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.5 − 0.866i)23-s + (−0.5 + 0.866i)25-s + (−0.5 − 0.866i)29-s + (0.5 − 0.866i)31-s + (−0.5 − 0.866i)35-s + (−0.5 − 0.866i)41-s + (−0.5 − 0.866i)43-s + (−0.5 − 0.866i)47-s + 49-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)5-s + 7-s + (0.5 + 0.866i)11-s + (−0.5 − 0.866i)13-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.5 − 0.866i)23-s + (−0.5 + 0.866i)25-s + (−0.5 − 0.866i)29-s + (0.5 − 0.866i)31-s + (−0.5 − 0.866i)35-s + (−0.5 − 0.866i)41-s + (−0.5 − 0.866i)43-s + (−0.5 − 0.866i)47-s + 49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.546 - 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.546 - 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.457626077 - 0.7890672285i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.457626077 - 0.7890672285i\) |
\(L(1)\) |
\(\approx\) |
\(1.096215256 - 0.2048777902i\) |
\(L(1)\) |
\(\approx\) |
\(1.096215256 - 0.2048777902i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.47410888950860678803480812826, −18.70618881600275075057151380799, −18.10461891154492282900483525813, −17.375950733247536750922878031799, −16.59260703866024542785703825107, −15.90004442626215544135814718876, −15.006000239770370510026622952, −14.44046236891357522853839966686, −14.01361731538217611430883715027, −13.11883473518666955639697869854, −11.94930353022926085965930956341, −11.39794475517774356209289362264, −11.14711001095838568347539321386, −10.121267793986835122647825221509, −9.23455674083039747910069983434, −8.504401229565311918449444184765, −7.69752038227246417754076241636, −6.9837325366079494344040204405, −6.419175028789577480406622698683, −5.20743579672021014682409048373, −4.656529942758767622531234639170, −3.615281535465638204751105923446, −2.959118168338840350904663359266, −1.97531602723750407206100912627, −0.95686974346214562499056117877,
0.63789797373158624707446976709, 1.632906770945987667450552023835, 2.348602837773391860515740699015, 3.8166861655805678064275745860, 4.21853378266099915180718055178, 5.14409497992975977877157437684, 5.68667862091401648041552327232, 6.87074544755388236563791820820, 7.73949641661833404066876097402, 8.23804258292088408052015560647, 8.85302512066659360341024046431, 9.954330218681768039354052004474, 10.43725514848050182485002444256, 11.53624510712038160315748308148, 12.06732592837531866466821898781, 12.67150712767393149183878138909, 13.35264256230506032151043875955, 14.5199732149413899050537341207, 14.9437296763752736084027116965, 15.46647945664166659805866434616, 16.60268254762613048769456512013, 17.2018075699164555370103525767, 17.45476194295152766220231650454, 18.6370079781438830473018195227, 19.164748995222975205759992482