Properties

Label 1-3895-3895.1088-r0-0-0
Degree 11
Conductor 38953895
Sign 0.02950.999i0.0295 - 0.999i
Analytic cond. 18.088318.0883
Root an. cond. 18.088318.0883
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.997 + 0.0697i)2-s + (−0.422 − 0.906i)3-s + (0.990 − 0.139i)4-s + (0.484 + 0.874i)6-s + (−0.629 + 0.777i)7-s + (−0.978 + 0.207i)8-s + (−0.642 + 0.766i)9-s + (0.544 − 0.838i)11-s + (−0.544 − 0.838i)12-s + (0.484 + 0.874i)13-s + (0.573 − 0.819i)14-s + (0.961 − 0.275i)16-s + (−0.920 − 0.390i)17-s + (0.587 − 0.809i)18-s + (0.970 + 0.241i)21-s + (−0.484 + 0.874i)22-s + ⋯
L(s)  = 1  + (−0.997 + 0.0697i)2-s + (−0.422 − 0.906i)3-s + (0.990 − 0.139i)4-s + (0.484 + 0.874i)6-s + (−0.629 + 0.777i)7-s + (−0.978 + 0.207i)8-s + (−0.642 + 0.766i)9-s + (0.544 − 0.838i)11-s + (−0.544 − 0.838i)12-s + (0.484 + 0.874i)13-s + (0.573 − 0.819i)14-s + (0.961 − 0.275i)16-s + (−0.920 − 0.390i)17-s + (0.587 − 0.809i)18-s + (0.970 + 0.241i)21-s + (−0.484 + 0.874i)22-s + ⋯

Functional equation

Λ(s)=(3895s/2ΓR(s)L(s)=((0.02950.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0295 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3895s/2ΓR(s)L(s)=((0.02950.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3895 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0295 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 38953895    =    519415 \cdot 19 \cdot 41
Sign: 0.02950.999i0.0295 - 0.999i
Analytic conductor: 18.088318.0883
Root analytic conductor: 18.088318.0883
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3895(1088,)\chi_{3895} (1088, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 3895, (0: ), 0.02950.999i)(1,\ 3895,\ (0:\ ),\ 0.0295 - 0.999i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.39225599920.4040186015i0.3922559992 - 0.4040186015i
L(12)L(\frac12) \approx 0.39225599920.4040186015i0.3922559992 - 0.4040186015i
L(1)L(1) \approx 0.52831622550.1171934443i0.5283162255 - 0.1171934443i
L(1)L(1) \approx 0.52831622550.1171934443i0.5283162255 - 0.1171934443i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
19 1 1
41 1 1
good2 1+(0.997+0.0697i)T 1 + (-0.997 + 0.0697i)T
3 1+(0.4220.906i)T 1 + (-0.422 - 0.906i)T
7 1+(0.629+0.777i)T 1 + (-0.629 + 0.777i)T
11 1+(0.5440.838i)T 1 + (0.544 - 0.838i)T
13 1+(0.484+0.874i)T 1 + (0.484 + 0.874i)T
17 1+(0.9200.390i)T 1 + (-0.920 - 0.390i)T
23 1+(0.694+0.719i)T 1 + (0.694 + 0.719i)T
29 1+(0.3900.920i)T 1 + (-0.390 - 0.920i)T
31 1+(0.6690.743i)T 1 + (-0.669 - 0.743i)T
37 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
43 1+(0.438+0.898i)T 1 + (-0.438 + 0.898i)T
47 1+(0.8570.515i)T 1 + (-0.857 - 0.515i)T
53 1+(0.7980.601i)T 1 + (-0.798 - 0.601i)T
59 1+(0.9970.0697i)T 1 + (0.997 - 0.0697i)T
61 1+(0.898+0.438i)T 1 + (-0.898 + 0.438i)T
67 1+(0.390+0.920i)T 1 + (0.390 + 0.920i)T
71 1+(0.7980.601i)T 1 + (0.798 - 0.601i)T
73 1+(0.939+0.342i)T 1 + (0.939 + 0.342i)T
79 1+(0.906+0.422i)T 1 + (-0.906 + 0.422i)T
83 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
89 1+(0.190+0.981i)T 1 + (0.190 + 0.981i)T
97 1+(0.974+0.224i)T 1 + (-0.974 + 0.224i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−18.497151902034643894437148437673, −17.92543866567878480648538697198, −17.20161809009387977856965276767, −16.83319008837735313425070557776, −16.124472518497094958823304814806, −15.47949516410185311669240341322, −14.95486622630169521123069121688, −14.16423270046438473556129496547, −12.79936877270791894954747821708, −12.61511401392705956190560090902, −11.42750047453667844924033146593, −10.885851367327879592696739436480, −10.39330860463580657905664484024, −9.74601372090925321933675053075, −9.09527197669564938491006629063, −8.49548954723126650875628249872, −7.48055232066963192261615078957, −6.68430679744148168872324620474, −6.289725203550455751547669082300, −5.22800401308809884420657846584, −4.329535938378941395451980932431, −3.52124073330916276712912679952, −2.91643048042105872668148803738, −1.68270555696624042882124328425, −0.72203510226805053767138014208, 0.34469303463842568309413387603, 1.35672962643315084477091995270, 2.13392213599387674051943142566, 2.8304715578076783191002896470, 3.80456603168184459109214795848, 5.19964191137609530354533577916, 6.01767394457269885446816321627, 6.42880817777283697965007277750, 7.02915461771087238044882261899, 7.91812451897001988883409344566, 8.6374415038500405852585243960, 9.212208297401422769629592015605, 9.79187835581750263974954857393, 11.16827666005870001033247562848, 11.31313281600151806153516662271, 11.84421020477733845566931448712, 12.90321271086852602884753357407, 13.33625912466956765068389378138, 14.29887918483244146448100407409, 15.1192926084715378616850868481, 15.94971535178388862575658584518, 16.49010246298044414270622681209, 17.0139304017644603060082153388, 17.820159857166059307129641864444, 18.48975505992554872886257410794

Graph of the ZZ-function along the critical line