L(s) = 1 | + (−0.997 + 0.0697i)2-s + (−0.422 − 0.906i)3-s + (0.990 − 0.139i)4-s + (0.484 + 0.874i)6-s + (−0.629 + 0.777i)7-s + (−0.978 + 0.207i)8-s + (−0.642 + 0.766i)9-s + (0.544 − 0.838i)11-s + (−0.544 − 0.838i)12-s + (0.484 + 0.874i)13-s + (0.573 − 0.819i)14-s + (0.961 − 0.275i)16-s + (−0.920 − 0.390i)17-s + (0.587 − 0.809i)18-s + (0.970 + 0.241i)21-s + (−0.484 + 0.874i)22-s + ⋯ |
L(s) = 1 | + (−0.997 + 0.0697i)2-s + (−0.422 − 0.906i)3-s + (0.990 − 0.139i)4-s + (0.484 + 0.874i)6-s + (−0.629 + 0.777i)7-s + (−0.978 + 0.207i)8-s + (−0.642 + 0.766i)9-s + (0.544 − 0.838i)11-s + (−0.544 − 0.838i)12-s + (0.484 + 0.874i)13-s + (0.573 − 0.819i)14-s + (0.961 − 0.275i)16-s + (−0.920 − 0.390i)17-s + (0.587 − 0.809i)18-s + (0.970 + 0.241i)21-s + (−0.484 + 0.874i)22-s + ⋯ |
Λ(s)=(=(3895s/2ΓR(s)L(s)(0.0295−0.999i)Λ(1−s)
Λ(s)=(=(3895s/2ΓR(s)L(s)(0.0295−0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
3895
= 5⋅19⋅41
|
Sign: |
0.0295−0.999i
|
Analytic conductor: |
18.0883 |
Root analytic conductor: |
18.0883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3895(1088,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 3895, (0: ), 0.0295−0.999i)
|
Particular Values
L(21) |
≈ |
0.3922559992−0.4040186015i |
L(21) |
≈ |
0.3922559992−0.4040186015i |
L(1) |
≈ |
0.5283162255−0.1171934443i |
L(1) |
≈ |
0.5283162255−0.1171934443i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
| 41 | 1 |
good | 2 | 1+(−0.997+0.0697i)T |
| 3 | 1+(−0.422−0.906i)T |
| 7 | 1+(−0.629+0.777i)T |
| 11 | 1+(0.544−0.838i)T |
| 13 | 1+(0.484+0.874i)T |
| 17 | 1+(−0.920−0.390i)T |
| 23 | 1+(0.694+0.719i)T |
| 29 | 1+(−0.390−0.920i)T |
| 31 | 1+(−0.669−0.743i)T |
| 37 | 1+(0.951−0.309i)T |
| 43 | 1+(−0.438+0.898i)T |
| 47 | 1+(−0.857−0.515i)T |
| 53 | 1+(−0.798−0.601i)T |
| 59 | 1+(0.997−0.0697i)T |
| 61 | 1+(−0.898+0.438i)T |
| 67 | 1+(0.390+0.920i)T |
| 71 | 1+(0.798−0.601i)T |
| 73 | 1+(0.939+0.342i)T |
| 79 | 1+(−0.906+0.422i)T |
| 83 | 1+(−0.866−0.5i)T |
| 89 | 1+(0.190+0.981i)T |
| 97 | 1+(−0.974+0.224i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−18.497151902034643894437148437673, −17.92543866567878480648538697198, −17.20161809009387977856965276767, −16.83319008837735313425070557776, −16.124472518497094958823304814806, −15.47949516410185311669240341322, −14.95486622630169521123069121688, −14.16423270046438473556129496547, −12.79936877270791894954747821708, −12.61511401392705956190560090902, −11.42750047453667844924033146593, −10.885851367327879592696739436480, −10.39330860463580657905664484024, −9.74601372090925321933675053075, −9.09527197669564938491006629063, −8.49548954723126650875628249872, −7.48055232066963192261615078957, −6.68430679744148168872324620474, −6.289725203550455751547669082300, −5.22800401308809884420657846584, −4.329535938378941395451980932431, −3.52124073330916276712912679952, −2.91643048042105872668148803738, −1.68270555696624042882124328425, −0.72203510226805053767138014208,
0.34469303463842568309413387603, 1.35672962643315084477091995270, 2.13392213599387674051943142566, 2.8304715578076783191002896470, 3.80456603168184459109214795848, 5.19964191137609530354533577916, 6.01767394457269885446816321627, 6.42880817777283697965007277750, 7.02915461771087238044882261899, 7.91812451897001988883409344566, 8.6374415038500405852585243960, 9.212208297401422769629592015605, 9.79187835581750263974954857393, 11.16827666005870001033247562848, 11.31313281600151806153516662271, 11.84421020477733845566931448712, 12.90321271086852602884753357407, 13.33625912466956765068389378138, 14.29887918483244146448100407409, 15.1192926084715378616850868481, 15.94971535178388862575658584518, 16.49010246298044414270622681209, 17.0139304017644603060082153388, 17.820159857166059307129641864444, 18.48975505992554872886257410794