L(s) = 1 | + (−0.976 + 0.216i)2-s + (−0.900 − 0.433i)3-s + (0.905 − 0.423i)4-s + (−0.131 + 0.991i)5-s + (0.973 + 0.228i)6-s + (0.863 − 0.504i)7-s + (−0.792 + 0.609i)8-s + (0.623 + 0.781i)9-s + (−0.0862 − 0.996i)10-s + (−0.919 − 0.391i)11-s + (−0.999 − 0.0115i)12-s + (0.955 + 0.294i)13-s + (−0.733 + 0.680i)14-s + (0.548 − 0.835i)15-s + (0.641 − 0.767i)16-s + (0.0287 + 0.999i)17-s + ⋯ |
L(s) = 1 | + (−0.976 + 0.216i)2-s + (−0.900 − 0.433i)3-s + (0.905 − 0.423i)4-s + (−0.131 + 0.991i)5-s + (0.973 + 0.228i)6-s + (0.863 − 0.504i)7-s + (−0.792 + 0.609i)8-s + (0.623 + 0.781i)9-s + (−0.0862 − 0.996i)10-s + (−0.919 − 0.391i)11-s + (−0.999 − 0.0115i)12-s + (0.955 + 0.294i)13-s + (−0.733 + 0.680i)14-s + (0.548 − 0.835i)15-s + (0.641 − 0.767i)16-s + (0.0287 + 0.999i)17-s + ⋯ |
Λ(s)=(=(547s/2ΓR(s)L(s)(0.534+0.845i)Λ(1−s)
Λ(s)=(=(547s/2ΓR(s)L(s)(0.534+0.845i)Λ(1−s)
Degree: |
1 |
Conductor: |
547
|
Sign: |
0.534+0.845i
|
Analytic conductor: |
2.54025 |
Root analytic conductor: |
2.54025 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ547(119,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 547, (0: ), 0.534+0.845i)
|
Particular Values
L(21) |
≈ |
0.5709361684+0.3145520072i |
L(21) |
≈ |
0.5709361684+0.3145520072i |
L(1) |
≈ |
0.5843362288+0.1054940408i |
L(1) |
≈ |
0.5843362288+0.1054940408i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 547 | 1 |
good | 2 | 1+(−0.976+0.216i)T |
| 3 | 1+(−0.900−0.433i)T |
| 5 | 1+(−0.131+0.991i)T |
| 7 | 1+(0.863−0.504i)T |
| 11 | 1+(−0.919−0.391i)T |
| 13 | 1+(0.955+0.294i)T |
| 17 | 1+(0.0287+0.999i)T |
| 19 | 1+(0.999−0.0230i)T |
| 23 | 1+(−0.332+0.942i)T |
| 29 | 1+(0.915−0.402i)T |
| 31 | 1+(0.962−0.272i)T |
| 37 | 1+(−0.944−0.327i)T |
| 41 | 1+(−0.5+0.866i)T |
| 43 | 1+(−0.958+0.283i)T |
| 47 | 1+(−0.0402−0.999i)T |
| 53 | 1+(−0.998−0.0575i)T |
| 59 | 1+(−0.200−0.979i)T |
| 61 | 1+(−0.439+0.898i)T |
| 67 | 1+(0.490+0.871i)T |
| 71 | 1+(0.838+0.544i)T |
| 73 | 1+(0.548+0.835i)T |
| 79 | 1+(0.725+0.688i)T |
| 83 | 1+(0.278−0.960i)T |
| 89 | 1+(0.997+0.0689i)T |
| 97 | 1+(0.586+0.809i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−23.37249798700030563522059453834, −22.309836360399261620724537306846, −21.12775679897024215587332720166, −20.79511075841950406885743882775, −20.197528445948040781818662336128, −18.67438070549624265732018801557, −18.08014504026461998805969785852, −17.5294806170250423880301873447, −16.52352979586295798000852387236, −15.7583084181217224776429503238, −15.46892121958841903957434514168, −13.75214731944932602268092772783, −12.358943638383855189057847944, −12.04858171200633727691254446987, −11.07346297825613890657459967223, −10.30130969552484060246356871953, −9.34744678534856016182699736408, −8.47243831049768278371820455810, −7.71678813661660948116833147992, −6.448818584415688542414323841237, −5.30219789974494816216262017292, −4.70211644320926218664224718141, −3.182196360657523213872036839261, −1.6984829460274084569778181379, −0.65888566327619274384804287077,
1.085806896620298234958073416244, 2.075338135908949861232538497396, 3.50627784654027667445477839226, 5.113379873144603833760164576823, 6.08327541862886246210528254321, 6.81868853350955885890567822519, 7.81999436016976662034691679669, 8.24055868147892386096927089363, 10.01725960168282885159859996689, 10.54257358785591698247851019898, 11.35030566631579681282353964293, 11.78366982707194571147375923468, 13.39282380931418260835190225136, 14.15809244800294244262136238030, 15.43739094950054267489575842211, 15.944781488704054616540025836114, 17.0699611201240574272976446508, 17.75470484573157435332500995415, 18.33560019460308217424268785122, 18.95395224862136819458310250675, 19.88188905611587524679485401406, 21.11212979398273217559017808588, 21.67633803583242879613329689470, 23.11601142782632528579809492056, 23.52955178747325394513187225372