Properties

Label 1-547-547.119-r0-0-0
Degree 11
Conductor 547547
Sign 0.534+0.845i0.534 + 0.845i
Analytic cond. 2.540252.54025
Root an. cond. 2.540252.54025
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.976 + 0.216i)2-s + (−0.900 − 0.433i)3-s + (0.905 − 0.423i)4-s + (−0.131 + 0.991i)5-s + (0.973 + 0.228i)6-s + (0.863 − 0.504i)7-s + (−0.792 + 0.609i)8-s + (0.623 + 0.781i)9-s + (−0.0862 − 0.996i)10-s + (−0.919 − 0.391i)11-s + (−0.999 − 0.0115i)12-s + (0.955 + 0.294i)13-s + (−0.733 + 0.680i)14-s + (0.548 − 0.835i)15-s + (0.641 − 0.767i)16-s + (0.0287 + 0.999i)17-s + ⋯
L(s)  = 1  + (−0.976 + 0.216i)2-s + (−0.900 − 0.433i)3-s + (0.905 − 0.423i)4-s + (−0.131 + 0.991i)5-s + (0.973 + 0.228i)6-s + (0.863 − 0.504i)7-s + (−0.792 + 0.609i)8-s + (0.623 + 0.781i)9-s + (−0.0862 − 0.996i)10-s + (−0.919 − 0.391i)11-s + (−0.999 − 0.0115i)12-s + (0.955 + 0.294i)13-s + (−0.733 + 0.680i)14-s + (0.548 − 0.835i)15-s + (0.641 − 0.767i)16-s + (0.0287 + 0.999i)17-s + ⋯

Functional equation

Λ(s)=(547s/2ΓR(s)L(s)=((0.534+0.845i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.534 + 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(547s/2ΓR(s)L(s)=((0.534+0.845i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.534 + 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 547547
Sign: 0.534+0.845i0.534 + 0.845i
Analytic conductor: 2.540252.54025
Root analytic conductor: 2.540252.54025
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ547(119,)\chi_{547} (119, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 547, (0: ), 0.534+0.845i)(1,\ 547,\ (0:\ ),\ 0.534 + 0.845i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.5709361684+0.3145520072i0.5709361684 + 0.3145520072i
L(12)L(\frac12) \approx 0.5709361684+0.3145520072i0.5709361684 + 0.3145520072i
L(1)L(1) \approx 0.5843362288+0.1054940408i0.5843362288 + 0.1054940408i
L(1)L(1) \approx 0.5843362288+0.1054940408i0.5843362288 + 0.1054940408i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad547 1 1
good2 1+(0.976+0.216i)T 1 + (-0.976 + 0.216i)T
3 1+(0.9000.433i)T 1 + (-0.900 - 0.433i)T
5 1+(0.131+0.991i)T 1 + (-0.131 + 0.991i)T
7 1+(0.8630.504i)T 1 + (0.863 - 0.504i)T
11 1+(0.9190.391i)T 1 + (-0.919 - 0.391i)T
13 1+(0.955+0.294i)T 1 + (0.955 + 0.294i)T
17 1+(0.0287+0.999i)T 1 + (0.0287 + 0.999i)T
19 1+(0.9990.0230i)T 1 + (0.999 - 0.0230i)T
23 1+(0.332+0.942i)T 1 + (-0.332 + 0.942i)T
29 1+(0.9150.402i)T 1 + (0.915 - 0.402i)T
31 1+(0.9620.272i)T 1 + (0.962 - 0.272i)T
37 1+(0.9440.327i)T 1 + (-0.944 - 0.327i)T
41 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
43 1+(0.958+0.283i)T 1 + (-0.958 + 0.283i)T
47 1+(0.04020.999i)T 1 + (-0.0402 - 0.999i)T
53 1+(0.9980.0575i)T 1 + (-0.998 - 0.0575i)T
59 1+(0.2000.979i)T 1 + (-0.200 - 0.979i)T
61 1+(0.439+0.898i)T 1 + (-0.439 + 0.898i)T
67 1+(0.490+0.871i)T 1 + (0.490 + 0.871i)T
71 1+(0.838+0.544i)T 1 + (0.838 + 0.544i)T
73 1+(0.548+0.835i)T 1 + (0.548 + 0.835i)T
79 1+(0.725+0.688i)T 1 + (0.725 + 0.688i)T
83 1+(0.2780.960i)T 1 + (0.278 - 0.960i)T
89 1+(0.997+0.0689i)T 1 + (0.997 + 0.0689i)T
97 1+(0.586+0.809i)T 1 + (0.586 + 0.809i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−23.37249798700030563522059453834, −22.309836360399261620724537306846, −21.12775679897024215587332720166, −20.79511075841950406885743882775, −20.197528445948040781818662336128, −18.67438070549624265732018801557, −18.08014504026461998805969785852, −17.5294806170250423880301873447, −16.52352979586295798000852387236, −15.7583084181217224776429503238, −15.46892121958841903957434514168, −13.75214731944932602268092772783, −12.358943638383855189057847944, −12.04858171200633727691254446987, −11.07346297825613890657459967223, −10.30130969552484060246356871953, −9.34744678534856016182699736408, −8.47243831049768278371820455810, −7.71678813661660948116833147992, −6.448818584415688542414323841237, −5.30219789974494816216262017292, −4.70211644320926218664224718141, −3.182196360657523213872036839261, −1.6984829460274084569778181379, −0.65888566327619274384804287077, 1.085806896620298234958073416244, 2.075338135908949861232538497396, 3.50627784654027667445477839226, 5.113379873144603833760164576823, 6.08327541862886246210528254321, 6.81868853350955885890567822519, 7.81999436016976662034691679669, 8.24055868147892386096927089363, 10.01725960168282885159859996689, 10.54257358785591698247851019898, 11.35030566631579681282353964293, 11.78366982707194571147375923468, 13.39282380931418260835190225136, 14.15809244800294244262136238030, 15.43739094950054267489575842211, 15.944781488704054616540025836114, 17.0699611201240574272976446508, 17.75470484573157435332500995415, 18.33560019460308217424268785122, 18.95395224862136819458310250675, 19.88188905611587524679485401406, 21.11212979398273217559017808588, 21.67633803583242879613329689470, 23.11601142782632528579809492056, 23.52955178747325394513187225372

Graph of the ZZ-function along the critical line