Properties

Label 1-847-847.237-r0-0-0
Degree 11
Conductor 847847
Sign 0.201+0.979i-0.201 + 0.979i
Analytic cond. 3.933453.93345
Root an. cond. 3.933453.93345
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.466 + 0.884i)2-s + (−0.309 − 0.951i)3-s + (−0.564 + 0.825i)4-s + (−0.198 + 0.980i)5-s + (0.696 − 0.717i)6-s + (−0.993 − 0.113i)8-s + (−0.809 + 0.587i)9-s + (−0.959 + 0.281i)10-s + (0.959 + 0.281i)12-s + (0.941 − 0.336i)13-s + (0.993 − 0.113i)15-s + (−0.362 − 0.931i)16-s + (0.974 − 0.226i)17-s + (−0.897 − 0.441i)18-s + (0.516 − 0.856i)19-s + (−0.696 − 0.717i)20-s + ⋯
L(s)  = 1  + (0.466 + 0.884i)2-s + (−0.309 − 0.951i)3-s + (−0.564 + 0.825i)4-s + (−0.198 + 0.980i)5-s + (0.696 − 0.717i)6-s + (−0.993 − 0.113i)8-s + (−0.809 + 0.587i)9-s + (−0.959 + 0.281i)10-s + (0.959 + 0.281i)12-s + (0.941 − 0.336i)13-s + (0.993 − 0.113i)15-s + (−0.362 − 0.931i)16-s + (0.974 − 0.226i)17-s + (−0.897 − 0.441i)18-s + (0.516 − 0.856i)19-s + (−0.696 − 0.717i)20-s + ⋯

Functional equation

Λ(s)=(847s/2ΓR(s)L(s)=((0.201+0.979i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.201 + 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(847s/2ΓR(s)L(s)=((0.201+0.979i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 847 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.201 + 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 847847    =    71127 \cdot 11^{2}
Sign: 0.201+0.979i-0.201 + 0.979i
Analytic conductor: 3.933453.93345
Root analytic conductor: 3.933453.93345
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ847(237,)\chi_{847} (237, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 847, (0: ), 0.201+0.979i)(1,\ 847,\ (0:\ ),\ -0.201 + 0.979i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.8876781742+1.088465083i0.8876781742 + 1.088465083i
L(12)L(\frac12) \approx 0.8876781742+1.088465083i0.8876781742 + 1.088465083i
L(1)L(1) \approx 0.9949064722+0.5067025904i0.9949064722 + 0.5067025904i
L(1)L(1) \approx 0.9949064722+0.5067025904i0.9949064722 + 0.5067025904i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
11 1 1
good2 1+(0.466+0.884i)T 1 + (0.466 + 0.884i)T
3 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
5 1+(0.198+0.980i)T 1 + (-0.198 + 0.980i)T
13 1+(0.9410.336i)T 1 + (0.941 - 0.336i)T
17 1+(0.9740.226i)T 1 + (0.974 - 0.226i)T
19 1+(0.5160.856i)T 1 + (0.516 - 0.856i)T
23 1+(0.841+0.540i)T 1 + (0.841 + 0.540i)T
29 1+(0.9210.389i)T 1 + (0.921 - 0.389i)T
31 1+(0.610+0.791i)T 1 + (-0.610 + 0.791i)T
37 1+(0.0285+0.999i)T 1 + (-0.0285 + 0.999i)T
41 1+(0.985+0.170i)T 1 + (-0.985 + 0.170i)T
43 1+(0.415+0.909i)T 1 + (-0.415 + 0.909i)T
47 1+(0.897+0.441i)T 1 + (-0.897 + 0.441i)T
53 1+(0.362+0.931i)T 1 + (-0.362 + 0.931i)T
59 1+(0.985+0.170i)T 1 + (0.985 + 0.170i)T
61 1+(0.466+0.884i)T 1 + (-0.466 + 0.884i)T
67 1+(0.142+0.989i)T 1 + (-0.142 + 0.989i)T
71 1+(0.0855+0.996i)T 1 + (0.0855 + 0.996i)T
73 1+(0.7740.633i)T 1 + (0.774 - 0.633i)T
79 1+(0.870+0.491i)T 1 + (0.870 + 0.491i)T
83 1+(0.9980.0570i)T 1 + (-0.998 - 0.0570i)T
89 1+(0.6540.755i)T 1 + (0.654 - 0.755i)T
97 1+(0.1980.980i)T 1 + (-0.198 - 0.980i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.651100459486630883841369800956, −20.96223307250466120584412405668, −20.63747417528147701359005896928, −19.81477625088605297169997378124, −18.86180118170564558724628563712, −17.99989920074875420147958146613, −16.86735529513651462996059886089, −16.30926847818778899341247806577, −15.4263326245475326837716391039, −14.55111195985018133284855165787, −13.75701259520439353847062395604, −12.73121341908050926914059586330, −12.05245387691542913846425958256, −11.324463257937921383347924942927, −10.46992772304103749459428470017, −9.68494176633832791363938613489, −8.91858178978711326507552304980, −8.17697634996180942219557350818, −6.38461351374075956059501118698, −5.42607150236073093266050303151, −4.9176884614453260771338601105, −3.81203952647562626115965212801, −3.405151786578308619869202325736, −1.79107984661021203050209379304, −0.67966814160027836238691425616, 1.14988941905933100342554779473, 2.87074309046720608349707006680, 3.33687849318026006108005519592, 4.84458767907547722283206816958, 5.73552856944427565930901890899, 6.541294171790754786610404024914, 7.16431848008505974054312456356, 7.912543087130799893974250692631, 8.72016268005483777741060397267, 10.03599157059721010599345598980, 11.252016526113570959874560478457, 11.779438244011117551915163184206, 12.83075482903470671422064271083, 13.57670733333999915322878248390, 14.161271320678326055932671805, 15.05449389974778252037754303857, 15.84176273694655784594936514390, 16.72341573820029367423123158375, 17.68339977943546207456824412866, 18.16800054542307402372230549243, 18.85498929142775639000916226023, 19.73893897176989004853440885637, 20.962702907948901035900546309704, 21.88448478952461123634803093502, 22.61321357029040799542021730477

Graph of the ZZ-function along the critical line