L(s) = 1 | + (0.466 + 0.884i)2-s + (−0.309 − 0.951i)3-s + (−0.564 + 0.825i)4-s + (−0.198 + 0.980i)5-s + (0.696 − 0.717i)6-s + (−0.993 − 0.113i)8-s + (−0.809 + 0.587i)9-s + (−0.959 + 0.281i)10-s + (0.959 + 0.281i)12-s + (0.941 − 0.336i)13-s + (0.993 − 0.113i)15-s + (−0.362 − 0.931i)16-s + (0.974 − 0.226i)17-s + (−0.897 − 0.441i)18-s + (0.516 − 0.856i)19-s + (−0.696 − 0.717i)20-s + ⋯ |
L(s) = 1 | + (0.466 + 0.884i)2-s + (−0.309 − 0.951i)3-s + (−0.564 + 0.825i)4-s + (−0.198 + 0.980i)5-s + (0.696 − 0.717i)6-s + (−0.993 − 0.113i)8-s + (−0.809 + 0.587i)9-s + (−0.959 + 0.281i)10-s + (0.959 + 0.281i)12-s + (0.941 − 0.336i)13-s + (0.993 − 0.113i)15-s + (−0.362 − 0.931i)16-s + (0.974 − 0.226i)17-s + (−0.897 − 0.441i)18-s + (0.516 − 0.856i)19-s + (−0.696 − 0.717i)20-s + ⋯ |
Λ(s)=(=(847s/2ΓR(s)L(s)(−0.201+0.979i)Λ(1−s)
Λ(s)=(=(847s/2ΓR(s)L(s)(−0.201+0.979i)Λ(1−s)
Degree: |
1 |
Conductor: |
847
= 7⋅112
|
Sign: |
−0.201+0.979i
|
Analytic conductor: |
3.93345 |
Root analytic conductor: |
3.93345 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ847(237,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 847, (0: ), −0.201+0.979i)
|
Particular Values
L(21) |
≈ |
0.8876781742+1.088465083i |
L(21) |
≈ |
0.8876781742+1.088465083i |
L(1) |
≈ |
0.9949064722+0.5067025904i |
L(1) |
≈ |
0.9949064722+0.5067025904i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 11 | 1 |
good | 2 | 1+(0.466+0.884i)T |
| 3 | 1+(−0.309−0.951i)T |
| 5 | 1+(−0.198+0.980i)T |
| 13 | 1+(0.941−0.336i)T |
| 17 | 1+(0.974−0.226i)T |
| 19 | 1+(0.516−0.856i)T |
| 23 | 1+(0.841+0.540i)T |
| 29 | 1+(0.921−0.389i)T |
| 31 | 1+(−0.610+0.791i)T |
| 37 | 1+(−0.0285+0.999i)T |
| 41 | 1+(−0.985+0.170i)T |
| 43 | 1+(−0.415+0.909i)T |
| 47 | 1+(−0.897+0.441i)T |
| 53 | 1+(−0.362+0.931i)T |
| 59 | 1+(0.985+0.170i)T |
| 61 | 1+(−0.466+0.884i)T |
| 67 | 1+(−0.142+0.989i)T |
| 71 | 1+(0.0855+0.996i)T |
| 73 | 1+(0.774−0.633i)T |
| 79 | 1+(0.870+0.491i)T |
| 83 | 1+(−0.998−0.0570i)T |
| 89 | 1+(0.654−0.755i)T |
| 97 | 1+(−0.198−0.980i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.651100459486630883841369800956, −20.96223307250466120584412405668, −20.63747417528147701359005896928, −19.81477625088605297169997378124, −18.86180118170564558724628563712, −17.99989920074875420147958146613, −16.86735529513651462996059886089, −16.30926847818778899341247806577, −15.4263326245475326837716391039, −14.55111195985018133284855165787, −13.75701259520439353847062395604, −12.73121341908050926914059586330, −12.05245387691542913846425958256, −11.324463257937921383347924942927, −10.46992772304103749459428470017, −9.68494176633832791363938613489, −8.91858178978711326507552304980, −8.17697634996180942219557350818, −6.38461351374075956059501118698, −5.42607150236073093266050303151, −4.9176884614453260771338601105, −3.81203952647562626115965212801, −3.405151786578308619869202325736, −1.79107984661021203050209379304, −0.67966814160027836238691425616,
1.14988941905933100342554779473, 2.87074309046720608349707006680, 3.33687849318026006108005519592, 4.84458767907547722283206816958, 5.73552856944427565930901890899, 6.541294171790754786610404024914, 7.16431848008505974054312456356, 7.912543087130799893974250692631, 8.72016268005483777741060397267, 10.03599157059721010599345598980, 11.252016526113570959874560478457, 11.779438244011117551915163184206, 12.83075482903470671422064271083, 13.57670733333999915322878248390, 14.161271320678326055932671805, 15.05449389974778252037754303857, 15.84176273694655784594936514390, 16.72341573820029367423123158375, 17.68339977943546207456824412866, 18.16800054542307402372230549243, 18.85498929142775639000916226023, 19.73893897176989004853440885637, 20.962702907948901035900546309704, 21.88448478952461123634803093502, 22.61321357029040799542021730477