Properties

Label 18-325e9-1.1-c5e9-0-0
Degree 1818
Conductor 4.045×10224.045\times 10^{22}
Sign 1-1
Analytic cond. 2.84050×10152.84050\times 10^{15}
Root an. cond. 7.219747.21974
Motivic weight 55
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 99

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·2-s + 11·3-s − 86·4-s + 55·6-s − 12·7-s − 312·8-s − 752·9-s − 1.42e3·11-s − 946·12-s − 1.52e3·13-s − 60·14-s + 3.45e3·16-s − 648·17-s − 3.76e3·18-s − 408·19-s − 132·21-s − 7.11e3·22-s − 1.83e3·23-s − 3.43e3·24-s − 7.60e3·26-s − 7.05e3·27-s + 1.03e3·28-s − 8.73e3·29-s + 748·31-s − 473·32-s − 1.56e4·33-s − 3.24e3·34-s + ⋯
L(s)  = 1  + 0.883·2-s + 0.705·3-s − 2.68·4-s + 0.623·6-s − 0.0925·7-s − 1.72·8-s − 3.09·9-s − 3.54·11-s − 1.89·12-s − 2.49·13-s − 0.0818·14-s + 3.37·16-s − 0.543·17-s − 2.73·18-s − 0.259·19-s − 0.0653·21-s − 3.13·22-s − 0.724·23-s − 1.21·24-s − 2.20·26-s − 1.86·27-s + 0.248·28-s − 1.92·29-s + 0.139·31-s − 0.0816·32-s − 2.50·33-s − 0.480·34-s + ⋯

Functional equation

Λ(s)=((518139)s/2ΓC(s)9L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{18} \cdot 13^{9}\right)^{s/2} \, \Gamma_{\C}(s)^{9} \, L(s)\cr=\mathstrut & -\,\Lambda(6-s)\end{aligned}
Λ(s)=((518139)s/2ΓC(s+5/2)9L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{18} \cdot 13^{9}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{9} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}

Invariants

Degree: 1818
Conductor: 5181395^{18} \cdot 13^{9}
Sign: 1-1
Analytic conductor: 2.84050×10152.84050\times 10^{15}
Root analytic conductor: 7.219747.21974
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 99
Selberg data: (18, 518139, ( :[5/2]9), 1)(18,\ 5^{18} \cdot 13^{9} ,\ ( \ : [5/2]^{9} ),\ -1 )

Particular Values

L(3)L(3) == 00
L(12)L(\frac12) == 00
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
13 (1+p2T)9 ( 1 + p^{2} T )^{9}
good2 15T+111T2673T3+1975p2T422509pT5+104647p2T6271961p3T7+1046245p4T8633137p7T9+1046245p9T10271961p13T11+104647p17T1222509p21T13+1975p27T14673p30T15+111p35T165p40T17+p45T18 1 - 5 T + 111 T^{2} - 673 T^{3} + 1975 p^{2} T^{4} - 22509 p T^{5} + 104647 p^{2} T^{6} - 271961 p^{3} T^{7} + 1046245 p^{4} T^{8} - 633137 p^{7} T^{9} + 1046245 p^{9} T^{10} - 271961 p^{13} T^{11} + 104647 p^{17} T^{12} - 22509 p^{21} T^{13} + 1975 p^{27} T^{14} - 673 p^{30} T^{15} + 111 p^{35} T^{16} - 5 p^{40} T^{17} + p^{45} T^{18}
3 111T+97p2T21202p2T3+149905pT42119657pT5+162917153T62502982570T7+15828224858pT879712893852p2T9+15828224858p6T102502982570p10T11+162917153p15T122119657p21T13+149905p26T141202p32T15+97p37T1611p40T17+p45T18 1 - 11 T + 97 p^{2} T^{2} - 1202 p^{2} T^{3} + 149905 p T^{4} - 2119657 p T^{5} + 162917153 T^{6} - 2502982570 T^{7} + 15828224858 p T^{8} - 79712893852 p^{2} T^{9} + 15828224858 p^{6} T^{10} - 2502982570 p^{10} T^{11} + 162917153 p^{15} T^{12} - 2119657 p^{21} T^{13} + 149905 p^{26} T^{14} - 1202 p^{32} T^{15} + 97 p^{37} T^{16} - 11 p^{40} T^{17} + p^{45} T^{18}
7 1+12T+96157T2+562396T3+4524975747T49279133840T5+138615511394837T61012284041916540T7+3074128450205785774T825354172273837803832T9+3074128450205785774p5T101012284041916540p10T11+138615511394837p15T129279133840p20T13+4524975747p25T14+562396p30T15+96157p35T16+12p40T17+p45T18 1 + 12 T + 96157 T^{2} + 562396 T^{3} + 4524975747 T^{4} - 9279133840 T^{5} + 138615511394837 T^{6} - 1012284041916540 T^{7} + 3074128450205785774 T^{8} - 25354172273837803832 T^{9} + 3074128450205785774 p^{5} T^{10} - 1012284041916540 p^{10} T^{11} + 138615511394837 p^{15} T^{12} - 9279133840 p^{20} T^{13} + 4524975747 p^{25} T^{14} + 562396 p^{30} T^{15} + 96157 p^{35} T^{16} + 12 p^{40} T^{17} + p^{45} T^{18}
11 1+1422T+1678928T2+1457218782T3+1113094396148T4+714749702584070T5+415158952053473389T6+ 1 + 1422 T + 1678928 T^{2} + 1457218782 T^{3} + 1113094396148 T^{4} + 714749702584070 T^{5} + 415158952053473389 T^{6} + 21 ⁣ ⁣2421\!\cdots\!24T7+ T^{7} + 90 ⁣ ⁣8890\!\cdots\!88pT8+ p T^{8} + 34 ⁣ ⁣9634\!\cdots\!96p2T9+ p^{2} T^{9} + 90 ⁣ ⁣8890\!\cdots\!88p6T10+ p^{6} T^{10} + 21 ⁣ ⁣2421\!\cdots\!24p10T11+415158952053473389p15T12+714749702584070p20T13+1113094396148p25T14+1457218782p30T15+1678928p35T16+1422p40T17+p45T18 p^{10} T^{11} + 415158952053473389 p^{15} T^{12} + 714749702584070 p^{20} T^{13} + 1113094396148 p^{25} T^{14} + 1457218782 p^{30} T^{15} + 1678928 p^{35} T^{16} + 1422 p^{40} T^{17} + p^{45} T^{18}
17 1+648T+3847624T2+3743716930T3+7955206965208T4+9997321106254216T5+16234048035213331295T6+ 1 + 648 T + 3847624 T^{2} + 3743716930 T^{3} + 7955206965208 T^{4} + 9997321106254216 T^{5} + 16234048035213331295 T^{6} + 17 ⁣ ⁣8417\!\cdots\!84T7+ T^{7} + 31 ⁣ ⁣8831\!\cdots\!88T8+ T^{8} + 26 ⁣ ⁣2026\!\cdots\!20T9+ T^{9} + 31 ⁣ ⁣8831\!\cdots\!88p5T10+ p^{5} T^{10} + 17 ⁣ ⁣8417\!\cdots\!84p10T11+16234048035213331295p15T12+9997321106254216p20T13+7955206965208p25T14+3743716930p30T15+3847624p35T16+648p40T17+p45T18 p^{10} T^{11} + 16234048035213331295 p^{15} T^{12} + 9997321106254216 p^{20} T^{13} + 7955206965208 p^{25} T^{14} + 3743716930 p^{30} T^{15} + 3847624 p^{35} T^{16} + 648 p^{40} T^{17} + p^{45} T^{18}
19 1+408T+13870454T2+362063268pT3+96344427116891T4+49973344519545016T5+ 1 + 408 T + 13870454 T^{2} + 362063268 p T^{3} + 96344427116891 T^{4} + 49973344519545016 T^{5} + 44 ⁣ ⁣5144\!\cdots\!51T6+ T^{6} + 21 ⁣ ⁣3221\!\cdots\!32T7+ T^{7} + 14 ⁣ ⁣9314\!\cdots\!93T8+ T^{8} + 33 ⁣ ⁣8033\!\cdots\!80pT9+ p T^{9} + 14 ⁣ ⁣9314\!\cdots\!93p5T10+ p^{5} T^{10} + 21 ⁣ ⁣3221\!\cdots\!32p10T11+ p^{10} T^{11} + 44 ⁣ ⁣5144\!\cdots\!51p15T12+49973344519545016p20T13+96344427116891p25T14+362063268p31T15+13870454p35T16+408p40T17+p45T18 p^{15} T^{12} + 49973344519545016 p^{20} T^{13} + 96344427116891 p^{25} T^{14} + 362063268 p^{31} T^{15} + 13870454 p^{35} T^{16} + 408 p^{40} T^{17} + p^{45} T^{18}
23 1+1839T+27570110T2+54947371329T3+393408475518083T4+689356483695756566T5+ 1 + 1839 T + 27570110 T^{2} + 54947371329 T^{3} + 393408475518083 T^{4} + 689356483695756566 T^{5} + 38 ⁣ ⁣6738\!\cdots\!67T6+ T^{6} + 56 ⁣ ⁣0756\!\cdots\!07T7+ T^{7} + 28 ⁣ ⁣4128\!\cdots\!41T8+ T^{8} + 38 ⁣ ⁣8638\!\cdots\!86T9+ T^{9} + 28 ⁣ ⁣4128\!\cdots\!41p5T10+ p^{5} T^{10} + 56 ⁣ ⁣0756\!\cdots\!07p10T11+ p^{10} T^{11} + 38 ⁣ ⁣6738\!\cdots\!67p15T12+689356483695756566p20T13+393408475518083p25T14+54947371329p30T15+27570110p35T16+1839p40T17+p45T18 p^{15} T^{12} + 689356483695756566 p^{20} T^{13} + 393408475518083 p^{25} T^{14} + 54947371329 p^{30} T^{15} + 27570110 p^{35} T^{16} + 1839 p^{40} T^{17} + p^{45} T^{18}
29 1+8737T+100263490T2+812860482637T3+5877575658032654T4+37024407518884704661T5+ 1 + 8737 T + 100263490 T^{2} + 812860482637 T^{3} + 5877575658032654 T^{4} + 37024407518884704661 T^{5} + 22 ⁣ ⁣5922\!\cdots\!59T6+ T^{6} + 11 ⁣ ⁣9011\!\cdots\!90T7+ T^{7} + 61 ⁣ ⁣0461\!\cdots\!04T8+ T^{8} + 28 ⁣ ⁣9428\!\cdots\!94T9+ T^{9} + 61 ⁣ ⁣0461\!\cdots\!04p5T10+ p^{5} T^{10} + 11 ⁣ ⁣9011\!\cdots\!90p10T11+ p^{10} T^{11} + 22 ⁣ ⁣5922\!\cdots\!59p15T12+37024407518884704661p20T13+5877575658032654p25T14+812860482637p30T15+100263490p35T16+8737p40T17+p45T18 p^{15} T^{12} + 37024407518884704661 p^{20} T^{13} + 5877575658032654 p^{25} T^{14} + 812860482637 p^{30} T^{15} + 100263490 p^{35} T^{16} + 8737 p^{40} T^{17} + p^{45} T^{18}
31 1748T+75897937T2+87335748108T3+3911511988579655T4+5672812818384581976T5+ 1 - 748 T + 75897937 T^{2} + 87335748108 T^{3} + 3911511988579655 T^{4} + 5672812818384581976 T^{5} + 17 ⁣ ⁣4917\!\cdots\!49T6+ T^{6} + 26 ⁣ ⁣8426\!\cdots\!84T7+ T^{7} + 56 ⁣ ⁣8656\!\cdots\!86T8+ T^{8} + 10 ⁣ ⁣6810\!\cdots\!68T9+ T^{9} + 56 ⁣ ⁣8656\!\cdots\!86p5T10+ p^{5} T^{10} + 26 ⁣ ⁣8426\!\cdots\!84p10T11+ p^{10} T^{11} + 17 ⁣ ⁣4917\!\cdots\!49p15T12+5672812818384581976p20T13+3911511988579655p25T14+87335748108p30T15+75897937p35T16748p40T17+p45T18 p^{15} T^{12} + 5672812818384581976 p^{20} T^{13} + 3911511988579655 p^{25} T^{14} + 87335748108 p^{30} T^{15} + 75897937 p^{35} T^{16} - 748 p^{40} T^{17} + p^{45} T^{18}
37 115486T+406034081T24455267036680T3+69627769486559328T4 1 - 15486 T + 406034081 T^{2} - 4455267036680 T^{3} + 69627769486559328 T^{4} - 58 ⁣ ⁣4858\!\cdots\!48T5+ T^{5} + 71 ⁣ ⁣3271\!\cdots\!32T6 T^{6} - 48 ⁣ ⁣4048\!\cdots\!40T7+ T^{7} + 53 ⁣ ⁣3053\!\cdots\!30T8 T^{8} - 33 ⁣ ⁣8833\!\cdots\!88T9+ T^{9} + 53 ⁣ ⁣3053\!\cdots\!30p5T10 p^{5} T^{10} - 48 ⁣ ⁣4048\!\cdots\!40p10T11+ p^{10} T^{11} + 71 ⁣ ⁣3271\!\cdots\!32p15T12 p^{15} T^{12} - 58 ⁣ ⁣4858\!\cdots\!48p20T13+69627769486559328p25T144455267036680p30T15+406034081p35T1615486p40T17+p45T18 p^{20} T^{13} + 69627769486559328 p^{25} T^{14} - 4455267036680 p^{30} T^{15} + 406034081 p^{35} T^{16} - 15486 p^{40} T^{17} + p^{45} T^{18}
41 1+28676T+807443290T2+15162634916010T3+279540162665697191T4+ 1 + 28676 T + 807443290 T^{2} + 15162634916010 T^{3} + 279540162665697191 T^{4} + 41 ⁣ ⁣6841\!\cdots\!68T5+ T^{5} + 61 ⁣ ⁣6961\!\cdots\!69T6+ T^{6} + 77 ⁣ ⁣7077\!\cdots\!70T7+ T^{7} + 96 ⁣ ⁣6996\!\cdots\!69T8+ T^{8} + 10 ⁣ ⁣8410\!\cdots\!84T9+ T^{9} + 96 ⁣ ⁣6996\!\cdots\!69p5T10+ p^{5} T^{10} + 77 ⁣ ⁣7077\!\cdots\!70p10T11+ p^{10} T^{11} + 61 ⁣ ⁣6961\!\cdots\!69p15T12+ p^{15} T^{12} + 41 ⁣ ⁣6841\!\cdots\!68p20T13+279540162665697191p25T14+15162634916010p30T15+807443290p35T16+28676p40T17+p45T18 p^{20} T^{13} + 279540162665697191 p^{25} T^{14} + 15162634916010 p^{30} T^{15} + 807443290 p^{35} T^{16} + 28676 p^{40} T^{17} + p^{45} T^{18}
43 1+28665T+905859098T2+19568343598455T3+410275978472684999T4+ 1 + 28665 T + 905859098 T^{2} + 19568343598455 T^{3} + 410275978472684999 T^{4} + 70 ⁣ ⁣5870\!\cdots\!58T5+ T^{5} + 11 ⁣ ⁣1111\!\cdots\!11T6+ T^{6} + 16 ⁣ ⁣2516\!\cdots\!25T7+ T^{7} + 23 ⁣ ⁣4923\!\cdots\!49T8+ T^{8} + 28 ⁣ ⁣2628\!\cdots\!26T9+ T^{9} + 23 ⁣ ⁣4923\!\cdots\!49p5T10+ p^{5} T^{10} + 16 ⁣ ⁣2516\!\cdots\!25p10T11+ p^{10} T^{11} + 11 ⁣ ⁣1111\!\cdots\!11p15T12+ p^{15} T^{12} + 70 ⁣ ⁣5870\!\cdots\!58p20T13+410275978472684999p25T14+19568343598455p30T15+905859098p35T16+28665p40T17+p45T18 p^{20} T^{13} + 410275978472684999 p^{25} T^{14} + 19568343598455 p^{30} T^{15} + 905859098 p^{35} T^{16} + 28665 p^{40} T^{17} + p^{45} T^{18}
47 129452T+1346699157T223094731728324T3+695077981104733875T4 1 - 29452 T + 1346699157 T^{2} - 23094731728324 T^{3} + 695077981104733875 T^{4} - 92 ⁣ ⁣9292\!\cdots\!92T5+ T^{5} + 25 ⁣ ⁣2925\!\cdots\!29T6 T^{6} - 31 ⁣ ⁣3631\!\cdots\!36T7+ T^{7} + 77 ⁣ ⁣4277\!\cdots\!42T8 T^{8} - 82 ⁣ ⁣4882\!\cdots\!48T9+ T^{9} + 77 ⁣ ⁣4277\!\cdots\!42p5T10 p^{5} T^{10} - 31 ⁣ ⁣3631\!\cdots\!36p10T11+ p^{10} T^{11} + 25 ⁣ ⁣2925\!\cdots\!29p15T12 p^{15} T^{12} - 92 ⁣ ⁣9292\!\cdots\!92p20T13+695077981104733875p25T1423094731728324p30T15+1346699157p35T1629452p40T17+p45T18 p^{20} T^{13} + 695077981104733875 p^{25} T^{14} - 23094731728324 p^{30} T^{15} + 1346699157 p^{35} T^{16} - 29452 p^{40} T^{17} + p^{45} T^{18}
53 1+75977T+4311797066T2+190721914335121T3+7007646765751779502T4+ 1 + 75977 T + 4311797066 T^{2} + 190721914335121 T^{3} + 7007646765751779502 T^{4} + 22 ⁣ ⁣5722\!\cdots\!57T5+ T^{5} + 64 ⁣ ⁣4764\!\cdots\!47T6+ T^{6} + 16 ⁣ ⁣2616\!\cdots\!26T7+ T^{7} + 38 ⁣ ⁣2438\!\cdots\!24T8+ T^{8} + 82 ⁣ ⁣7482\!\cdots\!74T9+ T^{9} + 38 ⁣ ⁣2438\!\cdots\!24p5T10+ p^{5} T^{10} + 16 ⁣ ⁣2616\!\cdots\!26p10T11+ p^{10} T^{11} + 64 ⁣ ⁣4764\!\cdots\!47p15T12+ p^{15} T^{12} + 22 ⁣ ⁣5722\!\cdots\!57p20T13+7007646765751779502p25T14+190721914335121p30T15+4311797066p35T16+75977p40T17+p45T18 p^{20} T^{13} + 7007646765751779502 p^{25} T^{14} + 190721914335121 p^{30} T^{15} + 4311797066 p^{35} T^{16} + 75977 p^{40} T^{17} + p^{45} T^{18}
59 1+88142T+7408012125T2+418488720267288T3+21514792833002089743T4+ 1 + 88142 T + 7408012125 T^{2} + 418488720267288 T^{3} + 21514792833002089743 T^{4} + 91 ⁣ ⁣7891\!\cdots\!78T5+ T^{5} + 35 ⁣ ⁣3735\!\cdots\!37T6+ T^{6} + 11 ⁣ ⁣4011\!\cdots\!40T7+ T^{7} + 37 ⁣ ⁣1837\!\cdots\!18T8+ T^{8} + 10 ⁣ ⁣1610\!\cdots\!16T9+ T^{9} + 37 ⁣ ⁣1837\!\cdots\!18p5T10+ p^{5} T^{10} + 11 ⁣ ⁣4011\!\cdots\!40p10T11+ p^{10} T^{11} + 35 ⁣ ⁣3735\!\cdots\!37p15T12+ p^{15} T^{12} + 91 ⁣ ⁣7891\!\cdots\!78p20T13+21514792833002089743p25T14+418488720267288p30T15+7408012125p35T16+88142p40T17+p45T18 p^{20} T^{13} + 21514792833002089743 p^{25} T^{14} + 418488720267288 p^{30} T^{15} + 7408012125 p^{35} T^{16} + 88142 p^{40} T^{17} + p^{45} T^{18}
61 128165T+5525406634T2111231076019257T3+13564817030465760102T4 1 - 28165 T + 5525406634 T^{2} - 111231076019257 T^{3} + 13564817030465760102 T^{4} - 20 ⁣ ⁣2120\!\cdots\!21T5+ T^{5} + 20 ⁣ ⁣8320\!\cdots\!83T6 T^{6} - 23 ⁣ ⁣8223\!\cdots\!82T7+ T^{7} + 23 ⁣ ⁣3223\!\cdots\!32T8 T^{8} - 22 ⁣ ⁣5422\!\cdots\!54T9+ T^{9} + 23 ⁣ ⁣3223\!\cdots\!32p5T10 p^{5} T^{10} - 23 ⁣ ⁣8223\!\cdots\!82p10T11+ p^{10} T^{11} + 20 ⁣ ⁣8320\!\cdots\!83p15T12 p^{15} T^{12} - 20 ⁣ ⁣2120\!\cdots\!21p20T13+13564817030465760102p25T14111231076019257p30T15+5525406634p35T1628165p40T17+p45T18 p^{20} T^{13} + 13564817030465760102 p^{25} T^{14} - 111231076019257 p^{30} T^{15} + 5525406634 p^{35} T^{16} - 28165 p^{40} T^{17} + p^{45} T^{18}
67 194754T+14705440952T21016307598907474T3+88638330878987469708T4 1 - 94754 T + 14705440952 T^{2} - 1016307598907474 T^{3} + 88638330878987469708 T^{4} - 47 ⁣ ⁣9047\!\cdots\!90T5+ T^{5} + 29 ⁣ ⁣4929\!\cdots\!49T6 T^{6} - 12 ⁣ ⁣9612\!\cdots\!96T7+ T^{7} + 61 ⁣ ⁣5661\!\cdots\!56T8 T^{8} - 21 ⁣ ⁣4821\!\cdots\!48T9+ T^{9} + 61 ⁣ ⁣5661\!\cdots\!56p5T10 p^{5} T^{10} - 12 ⁣ ⁣9612\!\cdots\!96p10T11+ p^{10} T^{11} + 29 ⁣ ⁣4929\!\cdots\!49p15T12 p^{15} T^{12} - 47 ⁣ ⁣9047\!\cdots\!90p20T13+88638330878987469708p25T141016307598907474p30T15+14705440952p35T1694754p40T17+p45T18 p^{20} T^{13} + 88638330878987469708 p^{25} T^{14} - 1016307598907474 p^{30} T^{15} + 14705440952 p^{35} T^{16} - 94754 p^{40} T^{17} + p^{45} T^{18}
71 1+70562T+145680381pT2+535896116798952T3+45814913528036188080T4+ 1 + 70562 T + 145680381 p T^{2} + 535896116798952 T^{3} + 45814913528036188080 T^{4} + 19 ⁣ ⁣7219\!\cdots\!72T5+ T^{5} + 12 ⁣ ⁣2012\!\cdots\!20T6+ T^{6} + 50 ⁣ ⁣6050\!\cdots\!60T7+ T^{7} + 27 ⁣ ⁣2627\!\cdots\!26T8+ T^{8} + 98 ⁣ ⁣8098\!\cdots\!80T9+ T^{9} + 27 ⁣ ⁣2627\!\cdots\!26p5T10+ p^{5} T^{10} + 50 ⁣ ⁣6050\!\cdots\!60p10T11+ p^{10} T^{11} + 12 ⁣ ⁣2012\!\cdots\!20p15T12+ p^{15} T^{12} + 19 ⁣ ⁣7219\!\cdots\!72p20T13+45814913528036188080p25T14+535896116798952p30T15+145680381p36T16+70562p40T17+p45T18 p^{20} T^{13} + 45814913528036188080 p^{25} T^{14} + 535896116798952 p^{30} T^{15} + 145680381 p^{36} T^{16} + 70562 p^{40} T^{17} + p^{45} T^{18}
73 1+60602T+11519959226T2+450972296343384T3+50569765709477765011T4+ 1 + 60602 T + 11519959226 T^{2} + 450972296343384 T^{3} + 50569765709477765011 T^{4} + 90 ⁣ ⁣5690\!\cdots\!56T5+ T^{5} + 10 ⁣ ⁣7710\!\cdots\!77T6 T^{6} - 13 ⁣ ⁣7213\!\cdots\!72T7+ T^{7} + 10 ⁣ ⁣1710\!\cdots\!17T8 T^{8} - 74 ⁣ ⁣1674\!\cdots\!16T9+ T^{9} + 10 ⁣ ⁣1710\!\cdots\!17p5T10 p^{5} T^{10} - 13 ⁣ ⁣7213\!\cdots\!72p10T11+ p^{10} T^{11} + 10 ⁣ ⁣7710\!\cdots\!77p15T12+ p^{15} T^{12} + 90 ⁣ ⁣5690\!\cdots\!56p20T13+50569765709477765011p25T14+450972296343384p30T15+11519959226p35T16+60602p40T17+p45T18 p^{20} T^{13} + 50569765709477765011 p^{25} T^{14} + 450972296343384 p^{30} T^{15} + 11519959226 p^{35} T^{16} + 60602 p^{40} T^{17} + p^{45} T^{18}
79 1+164073T+28189254670T2+2711262477059871T3+ 1 + 164073 T + 28189254670 T^{2} + 2711262477059871 T^{3} + 27 ⁣ ⁣5127\!\cdots\!51T4+ T^{4} + 19 ⁣ ⁣6619\!\cdots\!66T5+ T^{5} + 15 ⁣ ⁣6315\!\cdots\!63T6+ T^{6} + 95 ⁣ ⁣5395\!\cdots\!53T7+ T^{7} + 64 ⁣ ⁣8164\!\cdots\!81T8+ T^{8} + 34 ⁣ ⁣7034\!\cdots\!70T9+ T^{9} + 64 ⁣ ⁣8164\!\cdots\!81p5T10+ p^{5} T^{10} + 95 ⁣ ⁣5395\!\cdots\!53p10T11+ p^{10} T^{11} + 15 ⁣ ⁣6315\!\cdots\!63p15T12+ p^{15} T^{12} + 19 ⁣ ⁣6619\!\cdots\!66p20T13+ p^{20} T^{13} + 27 ⁣ ⁣5127\!\cdots\!51p25T14+2711262477059871p30T15+28189254670p35T16+164073p40T17+p45T18 p^{25} T^{14} + 2711262477059871 p^{30} T^{15} + 28189254670 p^{35} T^{16} + 164073 p^{40} T^{17} + p^{45} T^{18}
83 122458T+4152756288T2+65474123064726T3+17405654864177049364T4 1 - 22458 T + 4152756288 T^{2} + 65474123064726 T^{3} + 17405654864177049364 T^{4} - 56 ⁣ ⁣5856\!\cdots\!58T5+ T^{5} + 10 ⁣ ⁣4110\!\cdots\!41T6 T^{6} - 41 ⁣ ⁣8441\!\cdots\!84T7+ T^{7} + 20 ⁣ ⁣7220\!\cdots\!72T8 T^{8} - 10 ⁣ ⁣2810\!\cdots\!28T9+ T^{9} + 20 ⁣ ⁣7220\!\cdots\!72p5T10 p^{5} T^{10} - 41 ⁣ ⁣8441\!\cdots\!84p10T11+ p^{10} T^{11} + 10 ⁣ ⁣4110\!\cdots\!41p15T12 p^{15} T^{12} - 56 ⁣ ⁣5856\!\cdots\!58p20T13+17405654864177049364p25T14+65474123064726p30T15+4152756288p35T1622458p40T17+p45T18 p^{20} T^{13} + 17405654864177049364 p^{25} T^{14} + 65474123064726 p^{30} T^{15} + 4152756288 p^{35} T^{16} - 22458 p^{40} T^{17} + p^{45} T^{18}
89 1+252698T+59335278754T2+8555077606937916T3+ 1 + 252698 T + 59335278754 T^{2} + 8555077606937916 T^{3} + 11 ⁣ ⁣1111\!\cdots\!11T4+ T^{4} + 11 ⁣ ⁣7611\!\cdots\!76T5+ T^{5} + 10 ⁣ ⁣9710\!\cdots\!97T6+ T^{6} + 77 ⁣ ⁣7677\!\cdots\!76T7+ T^{7} + 59 ⁣ ⁣7759\!\cdots\!77T8+ T^{8} + 42 ⁣ ⁣6842\!\cdots\!68T9+ T^{9} + 59 ⁣ ⁣7759\!\cdots\!77p5T10+ p^{5} T^{10} + 77 ⁣ ⁣7677\!\cdots\!76p10T11+ p^{10} T^{11} + 10 ⁣ ⁣9710\!\cdots\!97p15T12+ p^{15} T^{12} + 11 ⁣ ⁣7611\!\cdots\!76p20T13+ p^{20} T^{13} + 11 ⁣ ⁣1111\!\cdots\!11p25T14+8555077606937916p30T15+59335278754p35T16+252698p40T17+p45T18 p^{25} T^{14} + 8555077606937916 p^{30} T^{15} + 59335278754 p^{35} T^{16} + 252698 p^{40} T^{17} + p^{45} T^{18}
97 1+137986T+49335221217T2+4614937388745376T3+ 1 + 137986 T + 49335221217 T^{2} + 4614937388745376 T^{3} + 90 ⁣ ⁣5690\!\cdots\!56T4+ T^{4} + 48 ⁣ ⁣8448\!\cdots\!84T5+ T^{5} + 72 ⁣ ⁣6872\!\cdots\!68T6 T^{6} - 13 ⁣ ⁣7213\!\cdots\!72T7+ T^{7} + 22 ⁣ ⁣4622\!\cdots\!46T8 T^{8} - 30 ⁣ ⁣7630\!\cdots\!76T9+ T^{9} + 22 ⁣ ⁣4622\!\cdots\!46p5T10 p^{5} T^{10} - 13 ⁣ ⁣7213\!\cdots\!72p10T11+ p^{10} T^{11} + 72 ⁣ ⁣6872\!\cdots\!68p15T12+ p^{15} T^{12} + 48 ⁣ ⁣8448\!\cdots\!84p20T13+ p^{20} T^{13} + 90 ⁣ ⁣5690\!\cdots\!56p25T14+4614937388745376p30T15+49335221217p35T16+137986p40T17+p45T18 p^{25} T^{14} + 4614937388745376 p^{30} T^{15} + 49335221217 p^{35} T^{16} + 137986 p^{40} T^{17} + p^{45} T^{18}
show more
show less
   L(s)=p j=118(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{18} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−4.42273691739669564308062997730, −4.37682272114799225031251111598, −4.30510933208574607435478014981, −4.15468565316900567701876607249, −4.04104828521342346299089149679, −3.84427667092487168652050435055, −3.73429801663297766238218452972, −3.26883537432043977553349622581, −3.16393518645599509801474451960, −3.13403914681743963082094512343, −3.11002238949483094823274849681, −3.10717132812192054745819131849, −2.78727354944167646215676148119, −2.76961448391811535394608730749, −2.73814101749413563883652858634, −2.35462796937034092988099424967, −2.27852694118193300828216366092, −2.14971235139531036061675877744, −1.86663097072994345048910443932, −1.79831990409123982812773120552, −1.69344998048524928618759341729, −1.34283860901037459188242718221, −1.16944459963800555915730240496, −1.16903717240384284724983499287, −0.817923808496536573826632166145, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.817923808496536573826632166145, 1.16903717240384284724983499287, 1.16944459963800555915730240496, 1.34283860901037459188242718221, 1.69344998048524928618759341729, 1.79831990409123982812773120552, 1.86663097072994345048910443932, 2.14971235139531036061675877744, 2.27852694118193300828216366092, 2.35462796937034092988099424967, 2.73814101749413563883652858634, 2.76961448391811535394608730749, 2.78727354944167646215676148119, 3.10717132812192054745819131849, 3.11002238949483094823274849681, 3.13403914681743963082094512343, 3.16393518645599509801474451960, 3.26883537432043977553349622581, 3.73429801663297766238218452972, 3.84427667092487168652050435055, 4.04104828521342346299089149679, 4.15468565316900567701876607249, 4.30510933208574607435478014981, 4.37682272114799225031251111598, 4.42273691739669564308062997730

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.