Properties

Label 2-2016-504.13-c0-0-2
Degree $2$
Conductor $2016$
Sign $0.766 - 0.642i$
Analytic cond. $1.00611$
Root an. cond. $1.00305$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)7-s + 9-s + (1 − 1.73i)13-s + (−0.5 + 0.866i)15-s − 19-s + (0.5 + 0.866i)21-s + (−0.5 + 0.866i)23-s + 27-s − 0.999·35-s + (1 − 1.73i)39-s + (−0.5 + 0.866i)45-s + (−0.499 + 0.866i)49-s − 57-s + ⋯
L(s)  = 1  + 3-s + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)7-s + 9-s + (1 − 1.73i)13-s + (−0.5 + 0.866i)15-s − 19-s + (0.5 + 0.866i)21-s + (−0.5 + 0.866i)23-s + 27-s − 0.999·35-s + (1 − 1.73i)39-s + (−0.5 + 0.866i)45-s + (−0.499 + 0.866i)49-s − 57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2016\)    =    \(2^{5} \cdot 3^{2} \cdot 7\)
Sign: $0.766 - 0.642i$
Analytic conductor: \(1.00611\)
Root analytic conductor: \(1.00305\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2016} (1777, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2016,\ (\ :0),\ 0.766 - 0.642i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.643072708\)
\(L(\frac12)\) \(\approx\) \(1.643072708\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + (-0.5 - 0.866i)T \)
good5 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (0.5 - 0.866i)T^{2} \)
13 \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 + T + T^{2} \)
23 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + (0.5 - 0.866i)T^{2} \)
31 \( 1 + (0.5 + 0.866i)T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + (0.5 + 0.866i)T^{2} \)
43 \( 1 + (0.5 - 0.866i)T^{2} \)
47 \( 1 + (0.5 - 0.866i)T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \)
61 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
67 \( 1 + (0.5 + 0.866i)T^{2} \)
71 \( 1 - T + T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
83 \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (0.5 - 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.235072933848291361251318556089, −8.505947450301507527814973318288, −7.964290299179779329584212328602, −7.36774723319439256077588380081, −6.28595586232714010796006816735, −5.52146208039271700821980634512, −4.32855987043820803936163721988, −3.35451779897366599851214696418, −2.83066632861473287727777596446, −1.66634993513980900622598223082, 1.26294782353213111319871103588, 2.19984469129728737511217979537, 3.73128407850930277592254016436, 4.24096841537220136804928842947, 4.77570975112722388148692413951, 6.36542483901567264389734633529, 6.97423186950906183680348929165, 7.991306080437785661021347412388, 8.455864843244766535547882207481, 9.006182579337892854141571062135

Graph of the $Z$-function along the critical line