L(s) = 1 | + 3-s + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)7-s + 9-s + (1 − 1.73i)13-s + (−0.5 + 0.866i)15-s − 19-s + (0.5 + 0.866i)21-s + (−0.5 + 0.866i)23-s + 27-s − 0.999·35-s + (1 − 1.73i)39-s + (−0.5 + 0.866i)45-s + (−0.499 + 0.866i)49-s − 57-s + ⋯ |
L(s) = 1 | + 3-s + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)7-s + 9-s + (1 − 1.73i)13-s + (−0.5 + 0.866i)15-s − 19-s + (0.5 + 0.866i)21-s + (−0.5 + 0.866i)23-s + 27-s − 0.999·35-s + (1 − 1.73i)39-s + (−0.5 + 0.866i)45-s + (−0.499 + 0.866i)49-s − 57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.643072708\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.643072708\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.235072933848291361251318556089, −8.505947450301507527814973318288, −7.964290299179779329584212328602, −7.36774723319439256077588380081, −6.28595586232714010796006816735, −5.52146208039271700821980634512, −4.32855987043820803936163721988, −3.35451779897366599851214696418, −2.83066632861473287727777596446, −1.66634993513980900622598223082,
1.26294782353213111319871103588, 2.19984469129728737511217979537, 3.73128407850930277592254016436, 4.24096841537220136804928842947, 4.77570975112722388148692413951, 6.36542483901567264389734633529, 6.97423186950906183680348929165, 7.991306080437785661021347412388, 8.455864843244766535547882207481, 9.006182579337892854141571062135