Properties

Label 2-1098-1.1-c1-0-11
Degree $2$
Conductor $1098$
Sign $1$
Analytic cond. $8.76757$
Root an. cond. $2.96100$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 3·5-s − 7-s + 8-s + 3·10-s + 3·11-s − 13-s − 14-s + 16-s + 6·17-s − 4·19-s + 3·20-s + 3·22-s − 3·23-s + 4·25-s − 26-s − 28-s − 4·31-s + 32-s + 6·34-s − 3·35-s + 8·37-s − 4·38-s + 3·40-s + 9·41-s − 4·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.377·7-s + 0.353·8-s + 0.948·10-s + 0.904·11-s − 0.277·13-s − 0.267·14-s + 1/4·16-s + 1.45·17-s − 0.917·19-s + 0.670·20-s + 0.639·22-s − 0.625·23-s + 4/5·25-s − 0.196·26-s − 0.188·28-s − 0.718·31-s + 0.176·32-s + 1.02·34-s − 0.507·35-s + 1.31·37-s − 0.648·38-s + 0.474·40-s + 1.40·41-s − 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1098\)    =    \(2 \cdot 3^{2} \cdot 61\)
Sign: $1$
Analytic conductor: \(8.76757\)
Root analytic conductor: \(2.96100\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1098,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.184284328\)
\(L(\frac12)\) \(\approx\) \(3.184284328\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
61 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.742709189690839321016951734240, −9.392128167223059007516612781579, −8.144128364167005586019818554778, −7.11997069390722482521983813574, −6.08938575984296370150186104292, −5.87700891989987107264649896461, −4.68923690112583534816030632465, −3.64559755494929929444330525032, −2.53003511413320787525010514230, −1.46320312717712285932160015720, 1.46320312717712285932160015720, 2.53003511413320787525010514230, 3.64559755494929929444330525032, 4.68923690112583534816030632465, 5.87700891989987107264649896461, 6.08938575984296370150186104292, 7.11997069390722482521983813574, 8.144128364167005586019818554778, 9.392128167223059007516612781579, 9.742709189690839321016951734240

Graph of the $Z$-function along the critical line