Properties

Label 2-1152-1.1-c3-0-28
Degree $2$
Conductor $1152$
Sign $-1$
Analytic cond. $67.9702$
Root an. cond. $8.24440$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 18.7·5-s − 19.7·7-s + 5.84·11-s + 33.7·13-s + 33.2·17-s + 102.·19-s + 130.·23-s + 228.·25-s − 111.·29-s − 257.·31-s + 370.·35-s + 424.·37-s − 10.9·41-s + 324.·43-s − 599.·47-s + 45.7·49-s − 106.·53-s − 109.·55-s − 617.·59-s − 325.·61-s − 634.·65-s − 240.·67-s + 123.·71-s − 46.7·73-s − 115.·77-s + 547.·79-s + 1.21e3·83-s + ⋯
L(s)  = 1  − 1.68·5-s − 1.06·7-s + 0.160·11-s + 0.719·13-s + 0.474·17-s + 1.24·19-s + 1.17·23-s + 1.82·25-s − 0.715·29-s − 1.49·31-s + 1.78·35-s + 1.88·37-s − 0.0416·41-s + 1.15·43-s − 1.86·47-s + 0.133·49-s − 0.276·53-s − 0.269·55-s − 1.36·59-s − 0.682·61-s − 1.21·65-s − 0.437·67-s + 0.207·71-s − 0.0749·73-s − 0.170·77-s + 0.779·79-s + 1.60·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(67.9702\)
Root analytic conductor: \(8.24440\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1152,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 18.7T + 125T^{2} \)
7 \( 1 + 19.7T + 343T^{2} \)
11 \( 1 - 5.84T + 1.33e3T^{2} \)
13 \( 1 - 33.7T + 2.19e3T^{2} \)
17 \( 1 - 33.2T + 4.91e3T^{2} \)
19 \( 1 - 102.T + 6.85e3T^{2} \)
23 \( 1 - 130.T + 1.21e4T^{2} \)
29 \( 1 + 111.T + 2.43e4T^{2} \)
31 \( 1 + 257.T + 2.97e4T^{2} \)
37 \( 1 - 424.T + 5.06e4T^{2} \)
41 \( 1 + 10.9T + 6.89e4T^{2} \)
43 \( 1 - 324.T + 7.95e4T^{2} \)
47 \( 1 + 599.T + 1.03e5T^{2} \)
53 \( 1 + 106.T + 1.48e5T^{2} \)
59 \( 1 + 617.T + 2.05e5T^{2} \)
61 \( 1 + 325.T + 2.26e5T^{2} \)
67 \( 1 + 240.T + 3.00e5T^{2} \)
71 \( 1 - 123.T + 3.57e5T^{2} \)
73 \( 1 + 46.7T + 3.89e5T^{2} \)
79 \( 1 - 547.T + 4.93e5T^{2} \)
83 \( 1 - 1.21e3T + 5.71e5T^{2} \)
89 \( 1 + 1.62e3T + 7.04e5T^{2} \)
97 \( 1 + 1.27e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.130112607380991072672899215117, −7.990647602553267574005879920482, −7.47629900508117810754807757779, −6.65292131436323617816497652196, −5.63176346981725065057332398146, −4.48109461032719560411517147070, −3.50335149687403109067222759661, −3.10805498415469800051914068335, −1.09469591784970631263785587142, 0, 1.09469591784970631263785587142, 3.10805498415469800051914068335, 3.50335149687403109067222759661, 4.48109461032719560411517147070, 5.63176346981725065057332398146, 6.65292131436323617816497652196, 7.47629900508117810754807757779, 7.990647602553267574005879920482, 9.130112607380991072672899215117

Graph of the $Z$-function along the critical line