L(s) = 1 | + 0.480·3-s + (−0.0382 + 2.23i)5-s + (0.312 + 0.312i)7-s − 2.76·9-s + (−1.55 − 1.55i)11-s + (−3.47 − 3.47i)13-s + (−0.0183 + 1.07i)15-s + 3.42i·17-s + (−2.53 + 2.53i)19-s + (0.150 + 0.150i)21-s + (−0.439 + 0.439i)23-s + (−4.99 − 0.171i)25-s − 2.77·27-s + (−4.36 − 3.15i)29-s + (1.56 + 1.56i)31-s + ⋯ |
L(s) = 1 | + 0.277·3-s + (−0.0171 + 0.999i)5-s + (0.118 + 0.118i)7-s − 0.923·9-s + (−0.468 − 0.468i)11-s + (−0.963 − 0.963i)13-s + (−0.00474 + 0.277i)15-s + 0.831i·17-s + (−0.582 + 0.582i)19-s + (0.0327 + 0.0327i)21-s + (−0.0916 + 0.0916i)23-s + (−0.999 − 0.0342i)25-s − 0.533·27-s + (−0.810 − 0.585i)29-s + (0.281 + 0.281i)31-s + ⋯ |
Λ(s)=(=(1160s/2ΓC(s)L(s)(−0.994+0.100i)Λ(2−s)
Λ(s)=(=(1160s/2ΓC(s+1/2)L(s)(−0.994+0.100i)Λ(1−s)
Degree: |
2 |
Conductor: |
1160
= 23⋅5⋅29
|
Sign: |
−0.994+0.100i
|
Analytic conductor: |
9.26264 |
Root analytic conductor: |
3.04345 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1160(737,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1160, ( :1/2), −0.994+0.100i)
|
Particular Values
L(1) |
≈ |
0.2452523698 |
L(21) |
≈ |
0.2452523698 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.0382−2.23i)T |
| 29 | 1+(4.36+3.15i)T |
good | 3 | 1−0.480T+3T2 |
| 7 | 1+(−0.312−0.312i)T+7iT2 |
| 11 | 1+(1.55+1.55i)T+11iT2 |
| 13 | 1+(3.47+3.47i)T+13iT2 |
| 17 | 1−3.42iT−17T2 |
| 19 | 1+(2.53−2.53i)T−19iT2 |
| 23 | 1+(0.439−0.439i)T−23iT2 |
| 31 | 1+(−1.56−1.56i)T+31iT2 |
| 37 | 1+0.0934T+37T2 |
| 41 | 1+(−0.878+0.878i)T−41iT2 |
| 43 | 1−2.35T+43T2 |
| 47 | 1+8.97T+47T2 |
| 53 | 1+(−0.348+0.348i)T−53iT2 |
| 59 | 1−0.108iT−59T2 |
| 61 | 1+(3.28+3.28i)T+61iT2 |
| 67 | 1+(−8.07+8.07i)T−67iT2 |
| 71 | 1−14.1iT−71T2 |
| 73 | 1+2.92iT−73T2 |
| 79 | 1+(11.1−11.1i)T−79iT2 |
| 83 | 1+(8.68−8.68i)T−83iT2 |
| 89 | 1+(−0.0205+0.0205i)T−89iT2 |
| 97 | 1+13.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25964341867379457306460284112, −9.521501319394967914858586024216, −8.185493386187909791465954764950, −8.070551849682257635943472981047, −6.91299499580354607991925018163, −5.94418705252991036971815092695, −5.33821814364066734230740631153, −3.86384224887747473863712941974, −2.98498826914679225386099669503, −2.18027440707632015444451926492,
0.092351155728314496677547824895, 1.88206805644213940190859256053, 2.88796662882581659221741232047, 4.34779032443784190412923204666, 4.91860981042033568685913350304, 5.84481499273409002196918090215, 7.03895067520234310642606245840, 7.77732685695488859118222980406, 8.678760336117358142509338435690, 9.271827671102272801144697178737