L(s) = 1 | + 0.480·3-s + (−0.0382 + 2.23i)5-s + (0.312 + 0.312i)7-s − 2.76·9-s + (−1.55 − 1.55i)11-s + (−3.47 − 3.47i)13-s + (−0.0183 + 1.07i)15-s + 3.42i·17-s + (−2.53 + 2.53i)19-s + (0.150 + 0.150i)21-s + (−0.439 + 0.439i)23-s + (−4.99 − 0.171i)25-s − 2.77·27-s + (−4.36 − 3.15i)29-s + (1.56 + 1.56i)31-s + ⋯ |
L(s) = 1 | + 0.277·3-s + (−0.0171 + 0.999i)5-s + (0.118 + 0.118i)7-s − 0.923·9-s + (−0.468 − 0.468i)11-s + (−0.963 − 0.963i)13-s + (−0.00474 + 0.277i)15-s + 0.831i·17-s + (−0.582 + 0.582i)19-s + (0.0327 + 0.0327i)21-s + (−0.0916 + 0.0916i)23-s + (−0.999 − 0.0342i)25-s − 0.533·27-s + (−0.810 − 0.585i)29-s + (0.281 + 0.281i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.994 + 0.100i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.994 + 0.100i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2452523698\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2452523698\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.0382 - 2.23i)T \) |
| 29 | \( 1 + (4.36 + 3.15i)T \) |
good | 3 | \( 1 - 0.480T + 3T^{2} \) |
| 7 | \( 1 + (-0.312 - 0.312i)T + 7iT^{2} \) |
| 11 | \( 1 + (1.55 + 1.55i)T + 11iT^{2} \) |
| 13 | \( 1 + (3.47 + 3.47i)T + 13iT^{2} \) |
| 17 | \( 1 - 3.42iT - 17T^{2} \) |
| 19 | \( 1 + (2.53 - 2.53i)T - 19iT^{2} \) |
| 23 | \( 1 + (0.439 - 0.439i)T - 23iT^{2} \) |
| 31 | \( 1 + (-1.56 - 1.56i)T + 31iT^{2} \) |
| 37 | \( 1 + 0.0934T + 37T^{2} \) |
| 41 | \( 1 + (-0.878 + 0.878i)T - 41iT^{2} \) |
| 43 | \( 1 - 2.35T + 43T^{2} \) |
| 47 | \( 1 + 8.97T + 47T^{2} \) |
| 53 | \( 1 + (-0.348 + 0.348i)T - 53iT^{2} \) |
| 59 | \( 1 - 0.108iT - 59T^{2} \) |
| 61 | \( 1 + (3.28 + 3.28i)T + 61iT^{2} \) |
| 67 | \( 1 + (-8.07 + 8.07i)T - 67iT^{2} \) |
| 71 | \( 1 - 14.1iT - 71T^{2} \) |
| 73 | \( 1 + 2.92iT - 73T^{2} \) |
| 79 | \( 1 + (11.1 - 11.1i)T - 79iT^{2} \) |
| 83 | \( 1 + (8.68 - 8.68i)T - 83iT^{2} \) |
| 89 | \( 1 + (-0.0205 + 0.0205i)T - 89iT^{2} \) |
| 97 | \( 1 + 13.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25964341867379457306460284112, −9.521501319394967914858586024216, −8.185493386187909791465954764950, −8.070551849682257635943472981047, −6.91299499580354607991925018163, −5.94418705252991036971815092695, −5.33821814364066734230740631153, −3.86384224887747473863712941974, −2.98498826914679225386099669503, −2.18027440707632015444451926492,
0.092351155728314496677547824895, 1.88206805644213940190859256053, 2.88796662882581659221741232047, 4.34779032443784190412923204666, 4.91860981042033568685913350304, 5.84481499273409002196918090215, 7.03895067520234310642606245840, 7.77732685695488859118222980406, 8.678760336117358142509338435690, 9.271827671102272801144697178737