L(s) = 1 | + (−2.58 − 2.58i)2-s + 2.16·3-s + 9.32i·4-s + (0.418 + 0.418i)5-s + (−5.58 − 5.58i)6-s + (−1.41 + 1.41i)7-s + (13.7 − 13.7i)8-s − 4.32·9-s − 2.16i·10-s + (−7.32 + 7.32i)11-s + 20.1i·12-s + (9.90 − 8.41i)13-s + 7.32·14-s + (0.905 + 0.905i)15-s − 33.6·16-s − 15.9i·17-s + ⋯ |
L(s) = 1 | + (−1.29 − 1.29i)2-s + 0.720·3-s + 2.33i·4-s + (0.0837 + 0.0837i)5-s + (−0.930 − 0.930i)6-s + (−0.202 + 0.202i)7-s + (1.71 − 1.71i)8-s − 0.480·9-s − 0.216i·10-s + (−0.665 + 0.665i)11-s + 1.68i·12-s + (0.761 − 0.647i)13-s + 0.523·14-s + (0.0603 + 0.0603i)15-s − 2.10·16-s − 0.939i·17-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)(0.399+0.916i)Λ(3−s)
Λ(s)=(=(13s/2ΓC(s+1)L(s)(0.399+0.916i)Λ(1−s)
Degree: |
2 |
Conductor: |
13
|
Sign: |
0.399+0.916i
|
Analytic conductor: |
0.354224 |
Root analytic conductor: |
0.595167 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ13(8,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 13, ( :1), 0.399+0.916i)
|
Particular Values
L(23) |
≈ |
0.424951−0.278524i |
L(21) |
≈ |
0.424951−0.278524i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(−9.90+8.41i)T |
good | 2 | 1+(2.58+2.58i)T+4iT2 |
| 3 | 1−2.16T+9T2 |
| 5 | 1+(−0.418−0.418i)T+25iT2 |
| 7 | 1+(1.41−1.41i)T−49iT2 |
| 11 | 1+(7.32−7.32i)T−121iT2 |
| 17 | 1+15.9iT−289T2 |
| 19 | 1+(3.16+3.16i)T+361iT2 |
| 23 | 1−27.4iT−529T2 |
| 29 | 1−25.8T+841T2 |
| 31 | 1+(−19.4−19.4i)T+961iT2 |
| 37 | 1+(4.23−4.23i)T−1.36e3iT2 |
| 41 | 1+(−11.1−11.1i)T+1.68e3iT2 |
| 43 | 1+11.5iT−1.84e3T2 |
| 47 | 1+(−35.3+35.3i)T−2.20e3iT2 |
| 53 | 1+4.18T+2.80e3T2 |
| 59 | 1+(30.2−30.2i)T−3.48e3iT2 |
| 61 | 1+67.6T+3.72e3T2 |
| 67 | 1+(81.0+81.0i)T+4.48e3iT2 |
| 71 | 1+(−50.4−50.4i)T+5.04e3iT2 |
| 73 | 1+(31.6−31.6i)T−5.32e3iT2 |
| 79 | 1−50.7T+6.24e3T2 |
| 83 | 1+(−18.6−18.6i)T+6.88e3iT2 |
| 89 | 1+(−91.1+91.1i)T−7.92e3iT2 |
| 97 | 1+(−87.3−87.3i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.69911499565106552817912694077, −18.41613043880210366164494295136, −17.51135788379122017091526354026, −15.73267954907706978465117940994, −13.56268633963231116245228884102, −12.03463667937509193806138129804, −10.50876836275333162196408802027, −9.177307123611610263205322290920, −7.921204180954394322383080744709, −2.85218477777242428197479268848,
6.16404177135625374340439059988, 8.056957803555827474452859535269, 8.998398593171744386351339134601, 10.65636187705288183345272844949, 13.69557914963411258049827622329, 14.90831937210881891886498767921, 16.17479581892520589519357467793, 17.20522381704729022489342949945, 18.65606451794125737962648612962, 19.45841386238803546328531060040