L(s) = 1 | + (−0.342 − 0.939i)2-s + (−0.766 + 0.642i)4-s + (1.85 − 0.326i)5-s + (0.866 + 0.500i)8-s + (−0.939 − 1.62i)10-s + (−1.11 − 1.32i)13-s + (0.173 − 0.984i)16-s + (−0.223 + 0.266i)17-s + (−1.20 + 1.43i)20-s + (2.37 − 0.866i)25-s + (−0.866 + 1.5i)26-s + (1.32 + 0.766i)29-s + (−0.984 + 0.173i)32-s + (0.326 + 0.118i)34-s + (−0.766 + 0.642i)37-s + ⋯ |
L(s) = 1 | + (−0.342 − 0.939i)2-s + (−0.766 + 0.642i)4-s + (1.85 − 0.326i)5-s + (0.866 + 0.500i)8-s + (−0.939 − 1.62i)10-s + (−1.11 − 1.32i)13-s + (0.173 − 0.984i)16-s + (−0.223 + 0.266i)17-s + (−1.20 + 1.43i)20-s + (2.37 − 0.866i)25-s + (−0.866 + 1.5i)26-s + (1.32 + 0.766i)29-s + (−0.984 + 0.173i)32-s + (0.326 + 0.118i)34-s + (−0.766 + 0.642i)37-s + ⋯ |
Λ(s)=(=(1332s/2ΓC(s)L(s)(0.165+0.986i)Λ(1−s)
Λ(s)=(=(1332s/2ΓC(s)L(s)(0.165+0.986i)Λ(1−s)
Degree: |
2 |
Conductor: |
1332
= 22⋅32⋅37
|
Sign: |
0.165+0.986i
|
Analytic conductor: |
0.664754 |
Root analytic conductor: |
0.815324 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1332(955,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1332, ( :0), 0.165+0.986i)
|
Particular Values
L(21) |
≈ |
1.120226884 |
L(21) |
≈ |
1.120226884 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.342+0.939i)T |
| 3 | 1 |
| 37 | 1+(0.766−0.642i)T |
good | 5 | 1+(−1.85+0.326i)T+(0.939−0.342i)T2 |
| 7 | 1+(0.939−0.342i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+(1.11+1.32i)T+(−0.173+0.984i)T2 |
| 17 | 1+(0.223−0.266i)T+(−0.173−0.984i)T2 |
| 19 | 1+(0.766+0.642i)T2 |
| 23 | 1+(−0.5+0.866i)T2 |
| 29 | 1+(−1.32−0.766i)T+(0.5+0.866i)T2 |
| 31 | 1+T2 |
| 41 | 1+(−1.50+1.26i)T+(0.173−0.984i)T2 |
| 43 | 1+T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(0.300−1.70i)T+(−0.939−0.342i)T2 |
| 59 | 1+(−0.939−0.342i)T2 |
| 61 | 1+(0.826+0.984i)T+(−0.173+0.984i)T2 |
| 67 | 1+(0.939−0.342i)T2 |
| 71 | 1+(−0.766−0.642i)T2 |
| 73 | 1+T+T2 |
| 79 | 1+(−0.939+0.342i)T2 |
| 83 | 1+(−0.173−0.984i)T2 |
| 89 | 1+(−0.342−0.0603i)T+(0.939+0.342i)T2 |
| 97 | 1+(1.11−0.642i)T+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.711495129028565444325372926752, −9.125954577152765826459937964749, −8.340466529275402217937170745385, −7.33682139493869176408948054488, −6.16505334215271097162321452910, −5.27907241930703673834405014677, −4.65446117706914957695090281278, −3.04852952161601770219063159311, −2.36439287260751885014870047146, −1.24404624598771149896843958942,
1.63821338709293107296953715705, 2.62319258197596189405011860772, 4.44488306622822276908806842747, 5.15046387891115202152039021574, 6.09369291918259737644122333065, 6.63382691298596714476923597857, 7.32263898724958685795112335475, 8.504243170977355564834340026565, 9.358207018386588814497372900770, 9.717363340882412989217334763263