L(s) = 1 | + (−0.342 − 0.939i)2-s + (−0.766 + 0.642i)4-s + (1.85 − 0.326i)5-s + (0.866 + 0.500i)8-s + (−0.939 − 1.62i)10-s + (−1.11 − 1.32i)13-s + (0.173 − 0.984i)16-s + (−0.223 + 0.266i)17-s + (−1.20 + 1.43i)20-s + (2.37 − 0.866i)25-s + (−0.866 + 1.5i)26-s + (1.32 + 0.766i)29-s + (−0.984 + 0.173i)32-s + (0.326 + 0.118i)34-s + (−0.766 + 0.642i)37-s + ⋯ |
L(s) = 1 | + (−0.342 − 0.939i)2-s + (−0.766 + 0.642i)4-s + (1.85 − 0.326i)5-s + (0.866 + 0.500i)8-s + (−0.939 − 1.62i)10-s + (−1.11 − 1.32i)13-s + (0.173 − 0.984i)16-s + (−0.223 + 0.266i)17-s + (−1.20 + 1.43i)20-s + (2.37 − 0.866i)25-s + (−0.866 + 1.5i)26-s + (1.32 + 0.766i)29-s + (−0.984 + 0.173i)32-s + (0.326 + 0.118i)34-s + (−0.766 + 0.642i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.165 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.165 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.120226884\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.120226884\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.342 + 0.939i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (0.766 - 0.642i)T \) |
good | 5 | \( 1 + (-1.85 + 0.326i)T + (0.939 - 0.342i)T^{2} \) |
| 7 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (1.11 + 1.32i)T + (-0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (0.223 - 0.266i)T + (-0.173 - 0.984i)T^{2} \) |
| 19 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-1.32 - 0.766i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-1.50 + 1.26i)T + (0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.300 - 1.70i)T + (-0.939 - 0.342i)T^{2} \) |
| 59 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 61 | \( 1 + (0.826 + 0.984i)T + (-0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 89 | \( 1 + (-0.342 - 0.0603i)T + (0.939 + 0.342i)T^{2} \) |
| 97 | \( 1 + (1.11 - 0.642i)T + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.711495129028565444325372926752, −9.125954577152765826459937964749, −8.340466529275402217937170745385, −7.33682139493869176408948054488, −6.16505334215271097162321452910, −5.27907241930703673834405014677, −4.65446117706914957695090281278, −3.04852952161601770219063159311, −2.36439287260751885014870047146, −1.24404624598771149896843958942,
1.63821338709293107296953715705, 2.62319258197596189405011860772, 4.44488306622822276908806842747, 5.15046387891115202152039021574, 6.09369291918259737644122333065, 6.63382691298596714476923597857, 7.32263898724958685795112335475, 8.504243170977355564834340026565, 9.358207018386588814497372900770, 9.717363340882412989217334763263