L(s) = 1 | + 2-s − 3-s + 4-s + 0.532·5-s − 6-s − 2.87·7-s + 8-s + 9-s + 0.532·10-s − 1.18·11-s − 12-s − 0.773·13-s − 2.87·14-s − 0.532·15-s + 16-s − 6.59·17-s + 18-s − 1.34·19-s + 0.532·20-s + 2.87·21-s − 1.18·22-s + 2.94·23-s − 24-s − 4.71·25-s − 0.773·26-s − 27-s − 2.87·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.237·5-s − 0.408·6-s − 1.08·7-s + 0.353·8-s + 0.333·9-s + 0.168·10-s − 0.357·11-s − 0.288·12-s − 0.214·13-s − 0.769·14-s − 0.137·15-s + 0.250·16-s − 1.59·17-s + 0.235·18-s − 0.309·19-s + 0.118·20-s + 0.628·21-s − 0.252·22-s + 0.613·23-s − 0.204·24-s − 0.943·25-s − 0.151·26-s − 0.192·27-s − 0.544·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + T \) |
| 223 | \( 1 - T \) |
good | 5 | \( 1 - 0.532T + 5T^{2} \) |
| 7 | \( 1 + 2.87T + 7T^{2} \) |
| 11 | \( 1 + 1.18T + 11T^{2} \) |
| 13 | \( 1 + 0.773T + 13T^{2} \) |
| 17 | \( 1 + 6.59T + 17T^{2} \) |
| 19 | \( 1 + 1.34T + 19T^{2} \) |
| 23 | \( 1 - 2.94T + 23T^{2} \) |
| 29 | \( 1 + 4.26T + 29T^{2} \) |
| 31 | \( 1 - 4.17T + 31T^{2} \) |
| 37 | \( 1 + 9.02T + 37T^{2} \) |
| 41 | \( 1 - 5.17T + 41T^{2} \) |
| 43 | \( 1 - 1.04T + 43T^{2} \) |
| 47 | \( 1 + 8.61T + 47T^{2} \) |
| 53 | \( 1 + 11.8T + 53T^{2} \) |
| 59 | \( 1 - 7.29T + 59T^{2} \) |
| 61 | \( 1 + 0.0564T + 61T^{2} \) |
| 67 | \( 1 - 9.43T + 67T^{2} \) |
| 71 | \( 1 - 3T + 71T^{2} \) |
| 73 | \( 1 + 9.29T + 73T^{2} \) |
| 79 | \( 1 + 2.57T + 79T^{2} \) |
| 83 | \( 1 + 7.84T + 83T^{2} \) |
| 89 | \( 1 + 10.0T + 89T^{2} \) |
| 97 | \( 1 + 10.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.432397506783785130922060943564, −8.390809754339466933084874926640, −7.18967206065112398106381009426, −6.58781025153773325652385679109, −5.91691072112951207048917525373, −5.00357626684990654874982756324, −4.12846236702990694789646112812, −3.07072327927044412072287395284, −1.97756921818019984034693284419, 0,
1.97756921818019984034693284419, 3.07072327927044412072287395284, 4.12846236702990694789646112812, 5.00357626684990654874982756324, 5.91691072112951207048917525373, 6.58781025153773325652385679109, 7.18967206065112398106381009426, 8.390809754339466933084874926640, 9.432397506783785130922060943564