Properties

Label 2-1338-1.1-c1-0-31
Degree $2$
Conductor $1338$
Sign $-1$
Analytic cond. $10.6839$
Root an. cond. $3.26863$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 0.532·5-s − 6-s − 2.87·7-s + 8-s + 9-s + 0.532·10-s − 1.18·11-s − 12-s − 0.773·13-s − 2.87·14-s − 0.532·15-s + 16-s − 6.59·17-s + 18-s − 1.34·19-s + 0.532·20-s + 2.87·21-s − 1.18·22-s + 2.94·23-s − 24-s − 4.71·25-s − 0.773·26-s − 27-s − 2.87·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.237·5-s − 0.408·6-s − 1.08·7-s + 0.353·8-s + 0.333·9-s + 0.168·10-s − 0.357·11-s − 0.288·12-s − 0.214·13-s − 0.769·14-s − 0.137·15-s + 0.250·16-s − 1.59·17-s + 0.235·18-s − 0.309·19-s + 0.118·20-s + 0.628·21-s − 0.252·22-s + 0.613·23-s − 0.204·24-s − 0.943·25-s − 0.151·26-s − 0.192·27-s − 0.544·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1338\)    =    \(2 \cdot 3 \cdot 223\)
Sign: $-1$
Analytic conductor: \(10.6839\)
Root analytic conductor: \(3.26863\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1338,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
223 \( 1 - T \)
good5 \( 1 - 0.532T + 5T^{2} \)
7 \( 1 + 2.87T + 7T^{2} \)
11 \( 1 + 1.18T + 11T^{2} \)
13 \( 1 + 0.773T + 13T^{2} \)
17 \( 1 + 6.59T + 17T^{2} \)
19 \( 1 + 1.34T + 19T^{2} \)
23 \( 1 - 2.94T + 23T^{2} \)
29 \( 1 + 4.26T + 29T^{2} \)
31 \( 1 - 4.17T + 31T^{2} \)
37 \( 1 + 9.02T + 37T^{2} \)
41 \( 1 - 5.17T + 41T^{2} \)
43 \( 1 - 1.04T + 43T^{2} \)
47 \( 1 + 8.61T + 47T^{2} \)
53 \( 1 + 11.8T + 53T^{2} \)
59 \( 1 - 7.29T + 59T^{2} \)
61 \( 1 + 0.0564T + 61T^{2} \)
67 \( 1 - 9.43T + 67T^{2} \)
71 \( 1 - 3T + 71T^{2} \)
73 \( 1 + 9.29T + 73T^{2} \)
79 \( 1 + 2.57T + 79T^{2} \)
83 \( 1 + 7.84T + 83T^{2} \)
89 \( 1 + 10.0T + 89T^{2} \)
97 \( 1 + 10.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.432397506783785130922060943564, −8.390809754339466933084874926640, −7.18967206065112398106381009426, −6.58781025153773325652385679109, −5.91691072112951207048917525373, −5.00357626684990654874982756324, −4.12846236702990694789646112812, −3.07072327927044412072287395284, −1.97756921818019984034693284419, 0, 1.97756921818019984034693284419, 3.07072327927044412072287395284, 4.12846236702990694789646112812, 5.00357626684990654874982756324, 5.91691072112951207048917525373, 6.58781025153773325652385679109, 7.18967206065112398106381009426, 8.390809754339466933084874926640, 9.432397506783785130922060943564

Graph of the $Z$-function along the critical line