L(s) = 1 | − 8·2-s + 27·3-s + 64·4-s − 216·6-s + 713·7-s − 512·8-s + 729·9-s + 3.81e3·11-s + 1.72e3·12-s − 391·13-s − 5.70e3·14-s + 4.09e3·16-s − 4.18e3·17-s − 5.83e3·18-s − 1.56e3·19-s + 1.92e4·21-s − 3.04e4·22-s + 1.14e5·23-s − 1.38e4·24-s + 3.12e3·26-s + 1.96e4·27-s + 4.56e4·28-s − 8.32e4·29-s − 8.31e4·31-s − 3.27e4·32-s + 1.02e5·33-s + 3.34e4·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.785·7-s − 0.353·8-s + 1/3·9-s + 0.863·11-s + 0.288·12-s − 0.0493·13-s − 0.555·14-s + 1/4·16-s − 0.206·17-s − 0.235·18-s − 0.0522·19-s + 0.453·21-s − 0.610·22-s + 1.95·23-s − 0.204·24-s + 0.0349·26-s + 0.192·27-s + 0.392·28-s − 0.633·29-s − 0.501·31-s − 0.176·32-s + 0.498·33-s + 0.145·34-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)Λ(8−s)
Λ(s)=(=(150s/2ΓC(s+7/2)L(s)Λ(1−s)
Particular Values
L(4) |
≈ |
2.223088830 |
L(21) |
≈ |
2.223088830 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p3T |
| 3 | 1−p3T |
| 5 | 1 |
good | 7 | 1−713T+p7T2 |
| 11 | 1−3810T+p7T2 |
| 13 | 1+391T+p7T2 |
| 17 | 1+246pT+p7T2 |
| 19 | 1+1561T+p7T2 |
| 23 | 1−114150T+p7T2 |
| 29 | 1+83214T+p7T2 |
| 31 | 1+83167T+p7T2 |
| 37 | 1+231334T+p7T2 |
| 41 | 1+124656T+p7T2 |
| 43 | 1−193757T+p7T2 |
| 47 | 1−319290T+p7T2 |
| 53 | 1−1645428T+p7T2 |
| 59 | 1+38610T+p7T2 |
| 61 | 1+1973905T+p7T2 |
| 67 | 1−4409753T+p7T2 |
| 71 | 1−124080T+p7T2 |
| 73 | 1−3967634T+p7T2 |
| 79 | 1−7107992T+p7T2 |
| 83 | 1−8117694T+p7T2 |
| 89 | 1−6727872T+p7T2 |
| 97 | 1+14268679T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.45921194648592781667234084880, −10.66793854975150206855935899270, −9.339478086748993728805354471289, −8.740987090324215724318964116006, −7.62477996435617221779927777086, −6.68807695357198084146737698173, −5.06826054908479792590959942658, −3.59148035168922448000544851468, −2.11247490149974123584653563129, −0.970133117928985016681601604619,
0.970133117928985016681601604619, 2.11247490149974123584653563129, 3.59148035168922448000544851468, 5.06826054908479792590959942658, 6.68807695357198084146737698173, 7.62477996435617221779927777086, 8.740987090324215724318964116006, 9.339478086748993728805354471289, 10.66793854975150206855935899270, 11.45921194648592781667234084880