L(s) = 1 | + (−0.760 + 0.649i)2-s + (0.156 − 0.987i)4-s + (0.852 − 0.522i)5-s + (0.522 + 0.852i)8-s + (0.0784 + 0.996i)9-s + (−0.309 + 0.951i)10-s + (−0.600 + 1.84i)13-s + (−0.951 − 0.309i)16-s + (−0.156 + 0.987i)17-s + (−0.707 − 0.707i)18-s + (−0.382 − 0.923i)20-s + (0.453 − 0.891i)25-s + (−0.744 − 1.79i)26-s + (−1.18 + 1.28i)29-s + (0.923 − 0.382i)32-s + ⋯ |
L(s) = 1 | + (−0.760 + 0.649i)2-s + (0.156 − 0.987i)4-s + (0.852 − 0.522i)5-s + (0.522 + 0.852i)8-s + (0.0784 + 0.996i)9-s + (−0.309 + 0.951i)10-s + (−0.600 + 1.84i)13-s + (−0.951 − 0.309i)16-s + (−0.156 + 0.987i)17-s + (−0.707 − 0.707i)18-s + (−0.382 − 0.923i)20-s + (0.453 − 0.891i)25-s + (−0.744 − 1.79i)26-s + (−1.18 + 1.28i)29-s + (0.923 − 0.382i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0989 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0989 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8346306289\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8346306289\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.760 - 0.649i)T \) |
| 5 | \( 1 + (-0.852 + 0.522i)T \) |
| 17 | \( 1 + (0.156 - 0.987i)T \) |
good | 3 | \( 1 + (-0.0784 - 0.996i)T^{2} \) |
| 7 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 11 | \( 1 + (0.233 + 0.972i)T^{2} \) |
| 13 | \( 1 + (0.600 - 1.84i)T + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.453 - 0.891i)T^{2} \) |
| 23 | \( 1 + (0.972 - 0.233i)T^{2} \) |
| 29 | \( 1 + (1.18 - 1.28i)T + (-0.0784 - 0.996i)T^{2} \) |
| 31 | \( 1 + (-0.760 + 0.649i)T^{2} \) |
| 37 | \( 1 + (0.145 - 1.22i)T + (-0.972 - 0.233i)T^{2} \) |
| 41 | \( 1 + (-0.663 + 1.18i)T + (-0.522 - 0.852i)T^{2} \) |
| 43 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.891 + 1.45i)T + (-0.453 - 0.891i)T^{2} \) |
| 59 | \( 1 + (-0.987 + 0.156i)T^{2} \) |
| 61 | \( 1 + (-1.98 + 0.234i)T + (0.972 - 0.233i)T^{2} \) |
| 67 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 71 | \( 1 + (-0.996 + 0.0784i)T^{2} \) |
| 73 | \( 1 + (0.187 - 0.666i)T + (-0.852 - 0.522i)T^{2} \) |
| 79 | \( 1 + (0.760 + 0.649i)T^{2} \) |
| 83 | \( 1 + (0.891 + 0.453i)T^{2} \) |
| 89 | \( 1 + (1.77 + 0.905i)T + (0.587 + 0.809i)T^{2} \) |
| 97 | \( 1 + (-0.234 + 0.00922i)T + (0.996 - 0.0784i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.657931656778403800644040519920, −8.775881129043272059703028849386, −8.411222235047769924845185583041, −7.18900353722314386268836302029, −6.75658763961190068080703463994, −5.67766460121723035234461549494, −5.07620492330351422854582917710, −4.17616582917808416765302284711, −2.16842465645264078523221705535, −1.68075929557754102923093665717,
0.838097898000839788912044359396, 2.39858176529485698705225371394, 2.99321184676570461681633288585, 4.02970206903258432931838778661, 5.40497003435683365738507703244, 6.18238081874973416932768893945, 7.24350959555173784727267388368, 7.70235464598546733940428608763, 8.835258071719701199165694464251, 9.577546741433850599656367986729