L(s) = 1 | + (−0.996 − 0.0784i)2-s + (0.987 + 0.156i)4-s + (−0.987 + 0.156i)5-s + (−0.972 − 0.233i)8-s + (−0.760 − 0.649i)9-s + (0.996 − 0.0784i)10-s + (0.444 + 0.144i)13-s + (0.951 + 0.309i)16-s + (0.453 + 0.891i)17-s + (0.707 + 0.707i)18-s − 20-s + (0.951 − 0.309i)25-s + (−0.431 − 0.178i)26-s + (0.666 − 1.80i)29-s + (−0.923 − 0.382i)32-s + ⋯ |
L(s) = 1 | + (−0.996 − 0.0784i)2-s + (0.987 + 0.156i)4-s + (−0.987 + 0.156i)5-s + (−0.972 − 0.233i)8-s + (−0.760 − 0.649i)9-s + (0.996 − 0.0784i)10-s + (0.444 + 0.144i)13-s + (0.951 + 0.309i)16-s + (0.453 + 0.891i)17-s + (0.707 + 0.707i)18-s − 20-s + (0.951 − 0.309i)25-s + (−0.431 − 0.178i)26-s + (0.666 − 1.80i)29-s + (−0.923 − 0.382i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.853 + 0.521i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.853 + 0.521i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5588418143\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5588418143\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.996 + 0.0784i)T \) |
| 5 | \( 1 + (0.987 - 0.156i)T \) |
| 17 | \( 1 + (-0.453 - 0.891i)T \) |
good | 3 | \( 1 + (0.760 + 0.649i)T^{2} \) |
| 7 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 11 | \( 1 + (0.522 - 0.852i)T^{2} \) |
| 13 | \( 1 + (-0.444 - 0.144i)T + (0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (0.891 + 0.453i)T^{2} \) |
| 23 | \( 1 + (-0.852 - 0.522i)T^{2} \) |
| 29 | \( 1 + (-0.666 + 1.80i)T + (-0.760 - 0.649i)T^{2} \) |
| 31 | \( 1 + (0.0784 - 0.996i)T^{2} \) |
| 37 | \( 1 + (-0.226 + 0.0638i)T + (0.852 - 0.522i)T^{2} \) |
| 41 | \( 1 + (-1.56 + 1.23i)T + (0.233 - 0.972i)T^{2} \) |
| 43 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (1.01 - 0.243i)T + (0.891 - 0.453i)T^{2} \) |
| 59 | \( 1 + (0.156 + 0.987i)T^{2} \) |
| 61 | \( 1 + (-1.41 - 0.398i)T + (0.852 + 0.522i)T^{2} \) |
| 67 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 71 | \( 1 + (0.649 - 0.760i)T^{2} \) |
| 73 | \( 1 + (0.0984 + 0.831i)T + (-0.972 + 0.233i)T^{2} \) |
| 79 | \( 1 + (-0.0784 - 0.996i)T^{2} \) |
| 83 | \( 1 + (-0.453 + 0.891i)T^{2} \) |
| 89 | \( 1 + (-0.0712 + 0.139i)T + (-0.587 - 0.809i)T^{2} \) |
| 97 | \( 1 + (-1.42 + 0.657i)T + (0.649 - 0.760i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.327168267297243099459266504453, −8.589254142191724018505262026097, −8.052612592380734033544348572721, −7.31533181073213775788686740261, −6.35532187709789006162917204146, −5.77254565491351866443424312169, −4.16711951501813260372940704529, −3.41898475360946198716131101417, −2.38818698831577730971186892906, −0.76218979166036468935683884055,
1.04185245266334702473969637005, 2.62724042075182796501868190859, 3.39358319281260119597218329807, 4.77389199071676007318147459860, 5.62772017522920335138554946750, 6.66902861432196667334661191163, 7.48646850885876466735922301423, 8.073979487627177811834951232829, 8.714003167785294719346158219335, 9.406728931324951987835948278363