L(s) = 1 | − 0.663i·3-s + 68.6·5-s − 214.·7-s + 242.·9-s + (95.0 + 389. i)11-s − 556. i·13-s − 45.5i·15-s + 1.84e3i·17-s + 1.21e3·19-s + 142. i·21-s + 121. i·23-s + 1.59e3·25-s − 322. i·27-s − 4.26e3i·29-s + 3.81e3i·31-s + ⋯ |
L(s) = 1 | − 0.0425i·3-s + 1.22·5-s − 1.65·7-s + 0.998·9-s + (0.236 + 0.971i)11-s − 0.912i·13-s − 0.0523i·15-s + 1.55i·17-s + 0.772·19-s + 0.0704i·21-s + 0.0478i·23-s + 0.509·25-s − 0.0850i·27-s − 0.942i·29-s + 0.712i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.723 - 0.690i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.723 - 0.690i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.151979960\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.151979960\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-95.0 - 389. i)T \) |
good | 3 | \( 1 + 0.663iT - 243T^{2} \) |
| 5 | \( 1 - 68.6T + 3.12e3T^{2} \) |
| 7 | \( 1 + 214.T + 1.68e4T^{2} \) |
| 13 | \( 1 + 556. iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 1.84e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 1.21e3T + 2.47e6T^{2} \) |
| 23 | \( 1 - 121. iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 4.26e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 3.81e3iT - 2.86e7T^{2} \) |
| 37 | \( 1 - 9.38e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 1.48e4iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 1.82e4T + 1.47e8T^{2} \) |
| 47 | \( 1 - 2.42e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 1.80e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 970. iT - 7.14e8T^{2} \) |
| 61 | \( 1 - 4.83e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 - 9.34e3iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 4.24e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 2.18e3iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 4.97e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 4.08e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 4.75e3T + 5.58e9T^{2} \) |
| 97 | \( 1 - 4.44e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.37222787874297826681487083481, −10.48892895811698185839813721508, −9.867558249079231384078613230019, −9.357261206384853190007109919200, −7.64671048755687421520432482533, −6.48159079321768427836222827957, −5.80623189066641751433423374244, −4.14392379136184272921233457432, −2.70274337192125060369002126618, −1.26312776975819096148539061327,
0.77028841425878082681259496750, 2.44460162197206608749523141796, 3.73981780674209125648292559110, 5.40722749908951826122157837264, 6.43984065025531748247627099943, 7.18981385727520701006275069507, 9.274600281356355300127286306604, 9.425438218928426285586197225683, 10.43233470425463565050895554411, 11.76690275775265621097700447379