L(s) = 1 | − 0.663i·3-s + 68.6·5-s − 214.·7-s + 242.·9-s + (95.0 + 389. i)11-s − 556. i·13-s − 45.5i·15-s + 1.84e3i·17-s + 1.21e3·19-s + 142. i·21-s + 121. i·23-s + 1.59e3·25-s − 322. i·27-s − 4.26e3i·29-s + 3.81e3i·31-s + ⋯ |
L(s) = 1 | − 0.0425i·3-s + 1.22·5-s − 1.65·7-s + 0.998·9-s + (0.236 + 0.971i)11-s − 0.912i·13-s − 0.0523i·15-s + 1.55i·17-s + 0.772·19-s + 0.0704i·21-s + 0.0478i·23-s + 0.509·25-s − 0.0850i·27-s − 0.942i·29-s + 0.712i·31-s + ⋯ |
Λ(s)=(=(176s/2ΓC(s)L(s)(0.723−0.690i)Λ(6−s)
Λ(s)=(=(176s/2ΓC(s+5/2)L(s)(0.723−0.690i)Λ(1−s)
Degree: |
2 |
Conductor: |
176
= 24⋅11
|
Sign: |
0.723−0.690i
|
Analytic conductor: |
28.2275 |
Root analytic conductor: |
5.31296 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ176(175,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 176, ( :5/2), 0.723−0.690i)
|
Particular Values
L(3) |
≈ |
2.151979960 |
L(21) |
≈ |
2.151979960 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−95.0−389.i)T |
good | 3 | 1+0.663iT−243T2 |
| 5 | 1−68.6T+3.12e3T2 |
| 7 | 1+214.T+1.68e4T2 |
| 13 | 1+556.iT−3.71e5T2 |
| 17 | 1−1.84e3iT−1.41e6T2 |
| 19 | 1−1.21e3T+2.47e6T2 |
| 23 | 1−121.iT−6.43e6T2 |
| 29 | 1+4.26e3iT−2.05e7T2 |
| 31 | 1−3.81e3iT−2.86e7T2 |
| 37 | 1−9.38e3T+6.93e7T2 |
| 41 | 1−1.48e4iT−1.15e8T2 |
| 43 | 1−1.82e4T+1.47e8T2 |
| 47 | 1−2.42e4iT−2.29e8T2 |
| 53 | 1−1.80e4T+4.18e8T2 |
| 59 | 1+970.iT−7.14e8T2 |
| 61 | 1−4.83e4iT−8.44e8T2 |
| 67 | 1−9.34e3iT−1.35e9T2 |
| 71 | 1+4.24e4iT−1.80e9T2 |
| 73 | 1+2.18e3iT−2.07e9T2 |
| 79 | 1−4.97e4T+3.07e9T2 |
| 83 | 1+4.08e4T+3.93e9T2 |
| 89 | 1+4.75e3T+5.58e9T2 |
| 97 | 1−4.44e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.37222787874297826681487083481, −10.48892895811698185839813721508, −9.867558249079231384078613230019, −9.357261206384853190007109919200, −7.64671048755687421520432482533, −6.48159079321768427836222827957, −5.80623189066641751433423374244, −4.14392379136184272921233457432, −2.70274337192125060369002126618, −1.26312776975819096148539061327,
0.77028841425878082681259496750, 2.44460162197206608749523141796, 3.73981780674209125648292559110, 5.40722749908951826122157837264, 6.43984065025531748247627099943, 7.18981385727520701006275069507, 9.274600281356355300127286306604, 9.425438218928426285586197225683, 10.43233470425463565050895554411, 11.76690275775265621097700447379