Properties

Label 2-176-44.43-c5-0-12
Degree $2$
Conductor $176$
Sign $0.723 - 0.690i$
Analytic cond. $28.2275$
Root an. cond. $5.31296$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.663i·3-s + 68.6·5-s − 214.·7-s + 242.·9-s + (95.0 + 389. i)11-s − 556. i·13-s − 45.5i·15-s + 1.84e3i·17-s + 1.21e3·19-s + 142. i·21-s + 121. i·23-s + 1.59e3·25-s − 322. i·27-s − 4.26e3i·29-s + 3.81e3i·31-s + ⋯
L(s)  = 1  − 0.0425i·3-s + 1.22·5-s − 1.65·7-s + 0.998·9-s + (0.236 + 0.971i)11-s − 0.912i·13-s − 0.0523i·15-s + 1.55i·17-s + 0.772·19-s + 0.0704i·21-s + 0.0478i·23-s + 0.509·25-s − 0.0850i·27-s − 0.942i·29-s + 0.712i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.723 - 0.690i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.723 - 0.690i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(176\)    =    \(2^{4} \cdot 11\)
Sign: $0.723 - 0.690i$
Analytic conductor: \(28.2275\)
Root analytic conductor: \(5.31296\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{176} (175, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 176,\ (\ :5/2),\ 0.723 - 0.690i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.151979960\)
\(L(\frac12)\) \(\approx\) \(2.151979960\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + (-95.0 - 389. i)T \)
good3 \( 1 + 0.663iT - 243T^{2} \)
5 \( 1 - 68.6T + 3.12e3T^{2} \)
7 \( 1 + 214.T + 1.68e4T^{2} \)
13 \( 1 + 556. iT - 3.71e5T^{2} \)
17 \( 1 - 1.84e3iT - 1.41e6T^{2} \)
19 \( 1 - 1.21e3T + 2.47e6T^{2} \)
23 \( 1 - 121. iT - 6.43e6T^{2} \)
29 \( 1 + 4.26e3iT - 2.05e7T^{2} \)
31 \( 1 - 3.81e3iT - 2.86e7T^{2} \)
37 \( 1 - 9.38e3T + 6.93e7T^{2} \)
41 \( 1 - 1.48e4iT - 1.15e8T^{2} \)
43 \( 1 - 1.82e4T + 1.47e8T^{2} \)
47 \( 1 - 2.42e4iT - 2.29e8T^{2} \)
53 \( 1 - 1.80e4T + 4.18e8T^{2} \)
59 \( 1 + 970. iT - 7.14e8T^{2} \)
61 \( 1 - 4.83e4iT - 8.44e8T^{2} \)
67 \( 1 - 9.34e3iT - 1.35e9T^{2} \)
71 \( 1 + 4.24e4iT - 1.80e9T^{2} \)
73 \( 1 + 2.18e3iT - 2.07e9T^{2} \)
79 \( 1 - 4.97e4T + 3.07e9T^{2} \)
83 \( 1 + 4.08e4T + 3.93e9T^{2} \)
89 \( 1 + 4.75e3T + 5.58e9T^{2} \)
97 \( 1 - 4.44e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.37222787874297826681487083481, −10.48892895811698185839813721508, −9.867558249079231384078613230019, −9.357261206384853190007109919200, −7.64671048755687421520432482533, −6.48159079321768427836222827957, −5.80623189066641751433423374244, −4.14392379136184272921233457432, −2.70274337192125060369002126618, −1.26312776975819096148539061327, 0.77028841425878082681259496750, 2.44460162197206608749523141796, 3.73981780674209125648292559110, 5.40722749908951826122157837264, 6.43984065025531748247627099943, 7.18981385727520701006275069507, 9.274600281356355300127286306604, 9.425438218928426285586197225683, 10.43233470425463565050895554411, 11.76690275775265621097700447379

Graph of the $Z$-function along the critical line