L(s) = 1 | + (−1.85 − 1.85i)2-s + (0.722 + 0.722i)3-s + 2.87i·4-s + (−6.14 − 6.14i)5-s − 2.67i·6-s + 9.45i·7-s + (−2.08 + 2.08i)8-s − 7.95i·9-s + 22.7i·10-s + (3.71 + 3.71i)11-s + (−2.07 + 2.07i)12-s + (0.369 + 0.369i)13-s + (17.5 − 17.5i)14-s − 8.87i·15-s + 19.2·16-s + (−15.3 + 15.3i)17-s + ⋯ |
L(s) = 1 | + (−0.927 − 0.927i)2-s + (0.240 + 0.240i)3-s + 0.718i·4-s + (−1.22 − 1.22i)5-s − 0.446i·6-s + 1.35i·7-s + (−0.260 + 0.260i)8-s − 0.884i·9-s + 2.27i·10-s + (0.337 + 0.337i)11-s + (−0.172 + 0.172i)12-s + (0.0284 + 0.0284i)13-s + (1.25 − 1.25i)14-s − 0.591i·15-s + 1.20·16-s + (−0.905 + 0.905i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.516 - 0.856i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.516 - 0.856i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.285630 + 0.161297i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.285630 + 0.161297i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 197 | \( 1 + (-40.5 - 192. i)T \) |
good | 2 | \( 1 + (1.85 + 1.85i)T + 4iT^{2} \) |
| 3 | \( 1 + (-0.722 - 0.722i)T + 9iT^{2} \) |
| 5 | \( 1 + (6.14 + 6.14i)T + 25iT^{2} \) |
| 7 | \( 1 - 9.45iT - 49T^{2} \) |
| 11 | \( 1 + (-3.71 - 3.71i)T + 121iT^{2} \) |
| 13 | \( 1 + (-0.369 - 0.369i)T + 169iT^{2} \) |
| 17 | \( 1 + (15.3 - 15.3i)T - 289iT^{2} \) |
| 19 | \( 1 - 17.7iT - 361T^{2} \) |
| 23 | \( 1 + 4.12T + 529T^{2} \) |
| 29 | \( 1 - 10.3T + 841T^{2} \) |
| 31 | \( 1 + (-34.3 - 34.3i)T + 961iT^{2} \) |
| 37 | \( 1 + 53.7T + 1.36e3T^{2} \) |
| 41 | \( 1 + 17.7iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 15.8iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 59.0iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 65.5T + 2.80e3T^{2} \) |
| 59 | \( 1 + 1.87T + 3.48e3T^{2} \) |
| 61 | \( 1 + 67.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + (73.0 + 73.0i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + (77.9 - 77.9i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (37.2 + 37.2i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (-4.08 + 4.08i)T - 6.24e3iT^{2} \) |
| 83 | \( 1 + 53.8iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-30.5 + 30.5i)T - 7.92e3iT^{2} \) |
| 97 | \( 1 + 8.46iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.19274744806313571496429222000, −11.66683505820000969862949590038, −10.37239624169984081338405931116, −9.105452266901446598399253092094, −8.826663457179970565891997794897, −8.042915757666918741262309139941, −6.10772523401405849903843318087, −4.59909787161423990173724261785, −3.29365206298301854848716064639, −1.52185705508447556633305579656,
0.25748343455340493497621127713, 3.07052435249348439333356355017, 4.39045408513033676815479325435, 6.59594355002220569552690438059, 7.19250898229744500192070462448, 7.76087429340537378345163862728, 8.709038233024351034502662910885, 10.15273518599908420950657806669, 10.91894997940126247277011945088, 11.77347964627880178866046710315