Properties

Label 2-208725-1.1-c1-0-10
Degree $2$
Conductor $208725$
Sign $1$
Analytic cond. $1666.67$
Root an. cond. $40.8249$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 6-s − 5·7-s − 3·8-s + 9-s − 12-s + 4·13-s − 5·14-s − 16-s + 2·17-s + 18-s − 2·19-s − 5·21-s + 23-s − 3·24-s + 4·26-s + 27-s + 5·28-s − 5·29-s + 9·31-s + 5·32-s + 2·34-s − 36-s − 3·37-s − 2·38-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.408·6-s − 1.88·7-s − 1.06·8-s + 1/3·9-s − 0.288·12-s + 1.10·13-s − 1.33·14-s − 1/4·16-s + 0.485·17-s + 0.235·18-s − 0.458·19-s − 1.09·21-s + 0.208·23-s − 0.612·24-s + 0.784·26-s + 0.192·27-s + 0.944·28-s − 0.928·29-s + 1.61·31-s + 0.883·32-s + 0.342·34-s − 1/6·36-s − 0.493·37-s − 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208725\)    =    \(3 \cdot 5^{2} \cdot 11^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1666.67\)
Root analytic conductor: \(40.8249\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 208725,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.345763037\)
\(L(\frac12)\) \(\approx\) \(2.345763037\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
11 \( 1 \)
23 \( 1 - T \)
good2 \( 1 - T + p T^{2} \)
7 \( 1 + 5 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 11 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 3 T + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 - T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 + 5 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.18336288760302, −12.83276259379291, −12.26156063588834, −11.86598280302984, −11.19559982354657, −10.63761689993856, −9.933353794906672, −9.760497569951884, −9.347680455014718, −8.786159945590415, −8.316651377941488, −8.003374881337302, −7.034377327390190, −6.661579093712023, −6.309102929815689, −5.694852207692145, −5.377134202759129, −4.454769446118330, −4.121942375548421, −3.466965064860873, −3.264761507112688, −2.780002550329106, −2.021478890331927, −1.052300077674996, −0.4151779225544627, 0.4151779225544627, 1.052300077674996, 2.021478890331927, 2.780002550329106, 3.264761507112688, 3.466965064860873, 4.121942375548421, 4.454769446118330, 5.377134202759129, 5.694852207692145, 6.309102929815689, 6.661579093712023, 7.034377327390190, 8.003374881337302, 8.316651377941488, 8.786159945590415, 9.347680455014718, 9.760497569951884, 9.933353794906672, 10.63761689993856, 11.19559982354657, 11.86598280302984, 12.26156063588834, 12.83276259379291, 13.18336288760302

Graph of the $Z$-function along the critical line