Properties

Label 2-208725-1.1-c1-0-13
Degree $2$
Conductor $208725$
Sign $-1$
Analytic cond. $1666.67$
Root an. cond. $40.8249$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s − 6-s − 3·7-s − 3·8-s + 9-s + 12-s − 13-s − 3·14-s − 16-s − 8·17-s + 18-s − 19-s + 3·21-s − 23-s + 3·24-s − 26-s − 27-s + 3·28-s + 5·29-s − 6·31-s + 5·32-s − 8·34-s − 36-s + 8·37-s − 38-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s − 1.13·7-s − 1.06·8-s + 1/3·9-s + 0.288·12-s − 0.277·13-s − 0.801·14-s − 1/4·16-s − 1.94·17-s + 0.235·18-s − 0.229·19-s + 0.654·21-s − 0.208·23-s + 0.612·24-s − 0.196·26-s − 0.192·27-s + 0.566·28-s + 0.928·29-s − 1.07·31-s + 0.883·32-s − 1.37·34-s − 1/6·36-s + 1.31·37-s − 0.162·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208725\)    =    \(3 \cdot 5^{2} \cdot 11^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1666.67\)
Root analytic conductor: \(40.8249\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 208725,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
23 \( 1 + T \)
good2 \( 1 - T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + 8 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 + 13 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 + 13 T + p T^{2} \)
79 \( 1 - 9 T + p T^{2} \)
83 \( 1 - 15 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14434839267966, −12.84872029707258, −12.48761064922659, −12.01752659745317, −11.41737060980584, −11.04237033095707, −10.49580927545534, −9.934355716491138, −9.442350660212926, −9.176954346373835, −8.639881237366396, −8.032722375232991, −7.446501179713704, −6.639420897659785, −6.423227043146771, −6.190176183956925, −5.383645198475777, −4.947132233618483, −4.448406909837239, −4.032061954619700, −3.453906475307639, −2.832881258222365, −2.349771129560817, −1.497913306435227, −0.4741294205076146, 0, 0.4741294205076146, 1.497913306435227, 2.349771129560817, 2.832881258222365, 3.453906475307639, 4.032061954619700, 4.448406909837239, 4.947132233618483, 5.383645198475777, 6.190176183956925, 6.423227043146771, 6.639420897659785, 7.446501179713704, 8.032722375232991, 8.639881237366396, 9.176954346373835, 9.442350660212926, 9.934355716491138, 10.49580927545534, 11.04237033095707, 11.41737060980584, 12.01752659745317, 12.48761064922659, 12.84872029707258, 13.14434839267966

Graph of the $Z$-function along the critical line