Properties

Label 2-2240-1.1-c3-0-142
Degree $2$
Conductor $2240$
Sign $-1$
Analytic cond. $132.164$
Root an. cond. $11.4962$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.96·3-s + 5·5-s − 7·7-s + 53.4·9-s − 16.1·11-s − 33.2·13-s + 44.8·15-s − 15.0·17-s − 58.6·19-s − 62.7·21-s − 144.·23-s + 25·25-s + 236.·27-s − 31.7·29-s − 264.·31-s − 144.·33-s − 35·35-s − 3.15·37-s − 297.·39-s + 14.6·41-s + 90.7·43-s + 267.·45-s − 572.·47-s + 49·49-s − 134.·51-s − 343.·53-s − 80.7·55-s + ⋯
L(s)  = 1  + 1.72·3-s + 0.447·5-s − 0.377·7-s + 1.97·9-s − 0.442·11-s − 0.708·13-s + 0.771·15-s − 0.214·17-s − 0.707·19-s − 0.652·21-s − 1.31·23-s + 0.200·25-s + 1.68·27-s − 0.203·29-s − 1.53·31-s − 0.763·33-s − 0.169·35-s − 0.0140·37-s − 1.22·39-s + 0.0558·41-s + 0.321·43-s + 0.884·45-s − 1.77·47-s + 0.142·49-s − 0.369·51-s − 0.891·53-s − 0.197·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2240\)    =    \(2^{6} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(132.164\)
Root analytic conductor: \(11.4962\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2240,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
7 \( 1 + 7T \)
good3 \( 1 - 8.96T + 27T^{2} \)
11 \( 1 + 16.1T + 1.33e3T^{2} \)
13 \( 1 + 33.2T + 2.19e3T^{2} \)
17 \( 1 + 15.0T + 4.91e3T^{2} \)
19 \( 1 + 58.6T + 6.85e3T^{2} \)
23 \( 1 + 144.T + 1.21e4T^{2} \)
29 \( 1 + 31.7T + 2.43e4T^{2} \)
31 \( 1 + 264.T + 2.97e4T^{2} \)
37 \( 1 + 3.15T + 5.06e4T^{2} \)
41 \( 1 - 14.6T + 6.89e4T^{2} \)
43 \( 1 - 90.7T + 7.95e4T^{2} \)
47 \( 1 + 572.T + 1.03e5T^{2} \)
53 \( 1 + 343.T + 1.48e5T^{2} \)
59 \( 1 + 303.T + 2.05e5T^{2} \)
61 \( 1 - 380.T + 2.26e5T^{2} \)
67 \( 1 + 68.3T + 3.00e5T^{2} \)
71 \( 1 - 1.00e3T + 3.57e5T^{2} \)
73 \( 1 + 513.T + 3.89e5T^{2} \)
79 \( 1 + 1.14e3T + 4.93e5T^{2} \)
83 \( 1 - 921.T + 5.71e5T^{2} \)
89 \( 1 - 909.T + 7.04e5T^{2} \)
97 \( 1 - 76.1T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.299515154500770753191096943109, −7.72150940176188750833634882642, −6.96391532988237444254323496028, −6.05299499174192957726734698057, −4.93529989272381450297621514358, −3.98635635651844416133312841246, −3.21440223751314517951380850247, −2.31367742334370712603835567473, −1.77048976209437716351269478350, 0, 1.77048976209437716351269478350, 2.31367742334370712603835567473, 3.21440223751314517951380850247, 3.98635635651844416133312841246, 4.93529989272381450297621514358, 6.05299499174192957726734698057, 6.96391532988237444254323496028, 7.72150940176188750833634882642, 8.299515154500770753191096943109

Graph of the $Z$-function along the critical line