L(s) = 1 | − 2-s + (0.355 − 1.69i)3-s + 4-s + (−2.14 + 3.71i)5-s + (−0.355 + 1.69i)6-s + (−0.751 + 1.30i)7-s − 8-s + (−2.74 − 1.20i)9-s + (2.14 − 3.71i)10-s − 4.24·11-s + (0.355 − 1.69i)12-s + (−3.60 + 0.0419i)13-s + (0.751 − 1.30i)14-s + (5.53 + 4.95i)15-s + 16-s + (0.0242 + 0.0419i)17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.205 − 0.978i)3-s + 0.5·4-s + (−0.959 + 1.66i)5-s + (−0.145 + 0.692i)6-s + (−0.283 + 0.491i)7-s − 0.353·8-s + (−0.915 − 0.401i)9-s + (0.678 − 1.17i)10-s − 1.27·11-s + (0.102 − 0.489i)12-s + (−0.999 + 0.0116i)13-s + (0.200 − 0.347i)14-s + (1.42 + 1.28i)15-s + 0.250·16-s + (0.00588 + 0.0101i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.524 - 0.851i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.524 - 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.174530 + 0.312498i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.174530 + 0.312498i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (-0.355 + 1.69i)T \) |
| 13 | \( 1 + (3.60 - 0.0419i)T \) |
good | 5 | \( 1 + (2.14 - 3.71i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.751 - 1.30i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + 4.24T + 11T^{2} \) |
| 17 | \( 1 + (-0.0242 - 0.0419i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.87 - 4.98i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.41 - 5.91i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 2.21T + 29T^{2} \) |
| 31 | \( 1 + (-3.74 + 6.49i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.35 - 2.34i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3.68 + 6.39i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.89 - 5.00i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.67 + 2.89i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 1.82T + 53T^{2} \) |
| 59 | \( 1 + 1.88T + 59T^{2} \) |
| 61 | \( 1 + (0.877 - 1.51i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.73 - 3.00i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.645 - 1.11i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 12.9T + 73T^{2} \) |
| 79 | \( 1 + (-4.24 - 7.35i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.370 + 0.642i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.288 + 0.500i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.59 - 4.49i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.11785414099702228182275891134, −11.64450510524164948299705121870, −10.58705253788001170608028038460, −9.704637346843388628228111507074, −8.136134638401834129840686700193, −7.59413537667196511401541395889, −6.89410507032120786690619282995, −5.71670636010093322481053712890, −3.25107678388294296367734290051, −2.46553784938447862938419620179,
0.33418551454119104893748572633, 3.00233180854061555298963123271, 4.62768563717673725574847339213, 5.13113865046407338699067204641, 7.23053351468390972986131250972, 8.232162130051598721694807537792, 8.857129603668757029466513078222, 9.821675864538037933939737611147, 10.67684149288535506598494600378, 11.74471053367781831228803227597