Properties

Label 2-234-117.32-c1-0-1
Degree $2$
Conductor $234$
Sign $0.112 - 0.993i$
Analytic cond. $1.86849$
Root an. cond. $1.36693$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)2-s + (−1.57 − 0.726i)3-s + 1.00i·4-s + (0.653 − 0.175i)5-s + (0.597 + 1.62i)6-s + (−3.90 + 1.04i)7-s + (0.707 − 0.707i)8-s + (1.94 + 2.28i)9-s + (−0.585 − 0.338i)10-s + (−0.502 + 0.502i)11-s + (0.726 − 1.57i)12-s + (−2.29 + 2.77i)13-s + (3.49 + 2.01i)14-s + (−1.15 − 0.199i)15-s − 1.00·16-s + (3.24 + 5.61i)17-s + ⋯
L(s)  = 1  + (−0.499 − 0.499i)2-s + (−0.907 − 0.419i)3-s + 0.500i·4-s + (0.292 − 0.0782i)5-s + (0.243 + 0.663i)6-s + (−1.47 + 0.394i)7-s + (0.250 − 0.250i)8-s + (0.647 + 0.761i)9-s + (−0.185 − 0.106i)10-s + (−0.151 + 0.151i)11-s + (0.209 − 0.453i)12-s + (−0.637 + 0.770i)13-s + (0.934 + 0.539i)14-s + (−0.297 − 0.0515i)15-s − 0.250·16-s + (0.786 + 1.36i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.112 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.112 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(234\)    =    \(2 \cdot 3^{2} \cdot 13\)
Sign: $0.112 - 0.993i$
Analytic conductor: \(1.86849\)
Root analytic conductor: \(1.36693\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{234} (149, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 234,\ (\ :1/2),\ 0.112 - 0.993i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.250040 + 0.223345i\)
\(L(\frac12)\) \(\approx\) \(0.250040 + 0.223345i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.707 + 0.707i)T \)
3 \( 1 + (1.57 + 0.726i)T \)
13 \( 1 + (2.29 - 2.77i)T \)
good5 \( 1 + (-0.653 + 0.175i)T + (4.33 - 2.5i)T^{2} \)
7 \( 1 + (3.90 - 1.04i)T + (6.06 - 3.5i)T^{2} \)
11 \( 1 + (0.502 - 0.502i)T - 11iT^{2} \)
17 \( 1 + (-3.24 - 5.61i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (0.253 + 0.0679i)T + (16.4 + 9.5i)T^{2} \)
23 \( 1 + (-0.860 - 1.49i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 - 1.28iT - 29T^{2} \)
31 \( 1 + (-1.04 - 3.89i)T + (-26.8 + 15.5i)T^{2} \)
37 \( 1 + (7.96 - 2.13i)T + (32.0 - 18.5i)T^{2} \)
41 \( 1 + (-2.39 + 8.94i)T + (-35.5 - 20.5i)T^{2} \)
43 \( 1 + (5.67 + 3.27i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 + (9.07 + 2.43i)T + (40.7 + 23.5i)T^{2} \)
53 \( 1 + 6.34iT - 53T^{2} \)
59 \( 1 + (3.52 - 3.52i)T - 59iT^{2} \)
61 \( 1 + (1.64 - 2.85i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-10.0 - 2.70i)T + (58.0 + 33.5i)T^{2} \)
71 \( 1 + (2.09 - 7.82i)T + (-61.4 - 35.5i)T^{2} \)
73 \( 1 + (1.40 + 1.40i)T + 73iT^{2} \)
79 \( 1 + (-7.29 - 12.6i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-1.04 + 3.90i)T + (-71.8 - 41.5i)T^{2} \)
89 \( 1 + (2.64 + 9.85i)T + (-77.0 + 44.5i)T^{2} \)
97 \( 1 + (-0.520 - 1.94i)T + (-84.0 + 48.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.40925791854938451744987758951, −11.55310210325390548217440494883, −10.26816080993993132451837487572, −9.850453201472966548107026419473, −8.658543761590445363589947704119, −7.25333292911417480518355737318, −6.41056625244526405319067680414, −5.32195317498869915273335430380, −3.58901930326341224334228308131, −1.88096976251078727627822718868, 0.34570584695317748369170126342, 3.19257265030370646425806116992, 4.88162305254278628553277744137, 5.96303974874878413972181553434, 6.74668856679165901609556055885, 7.79249875025329875504804660060, 9.591164822935936238823358703334, 9.755552471637068486689899489360, 10.69794958110887916538089510891, 11.89525451707774612525624335150

Graph of the $Z$-function along the critical line