L(s) = 1 | + (−0.707 − 0.707i)2-s + (−1.57 − 0.726i)3-s + 1.00i·4-s + (0.653 − 0.175i)5-s + (0.597 + 1.62i)6-s + (−3.90 + 1.04i)7-s + (0.707 − 0.707i)8-s + (1.94 + 2.28i)9-s + (−0.585 − 0.338i)10-s + (−0.502 + 0.502i)11-s + (0.726 − 1.57i)12-s + (−2.29 + 2.77i)13-s + (3.49 + 2.01i)14-s + (−1.15 − 0.199i)15-s − 1.00·16-s + (3.24 + 5.61i)17-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (−0.907 − 0.419i)3-s + 0.500i·4-s + (0.292 − 0.0782i)5-s + (0.243 + 0.663i)6-s + (−1.47 + 0.394i)7-s + (0.250 − 0.250i)8-s + (0.647 + 0.761i)9-s + (−0.185 − 0.106i)10-s + (−0.151 + 0.151i)11-s + (0.209 − 0.453i)12-s + (−0.637 + 0.770i)13-s + (0.934 + 0.539i)14-s + (−0.297 − 0.0515i)15-s − 0.250·16-s + (0.786 + 1.36i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.112 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.112 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.250040 + 0.223345i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.250040 + 0.223345i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 + (1.57 + 0.726i)T \) |
| 13 | \( 1 + (2.29 - 2.77i)T \) |
good | 5 | \( 1 + (-0.653 + 0.175i)T + (4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (3.90 - 1.04i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (0.502 - 0.502i)T - 11iT^{2} \) |
| 17 | \( 1 + (-3.24 - 5.61i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.253 + 0.0679i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.860 - 1.49i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 1.28iT - 29T^{2} \) |
| 31 | \( 1 + (-1.04 - 3.89i)T + (-26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (7.96 - 2.13i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-2.39 + 8.94i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (5.67 + 3.27i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (9.07 + 2.43i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + 6.34iT - 53T^{2} \) |
| 59 | \( 1 + (3.52 - 3.52i)T - 59iT^{2} \) |
| 61 | \( 1 + (1.64 - 2.85i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.0 - 2.70i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (2.09 - 7.82i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (1.40 + 1.40i)T + 73iT^{2} \) |
| 79 | \( 1 + (-7.29 - 12.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.04 + 3.90i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (2.64 + 9.85i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-0.520 - 1.94i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.40925791854938451744987758951, −11.55310210325390548217440494883, −10.26816080993993132451837487572, −9.850453201472966548107026419473, −8.658543761590445363589947704119, −7.25333292911417480518355737318, −6.41056625244526405319067680414, −5.32195317498869915273335430380, −3.58901930326341224334228308131, −1.88096976251078727627822718868,
0.34570584695317748369170126342, 3.19257265030370646425806116992, 4.88162305254278628553277744137, 5.96303974874878413972181553434, 6.74668856679165901609556055885, 7.79249875025329875504804660060, 9.591164822935936238823358703334, 9.755552471637068486689899489360, 10.69794958110887916538089510891, 11.89525451707774612525624335150