L(s) = 1 | + (−0.980 − 0.198i)3-s + (−0.270 − 0.962i)4-s + (0.542 + 0.840i)7-s + (0.921 + 0.388i)9-s + (0.0747 + 0.997i)12-s + (0.636 − 0.0317i)13-s + (−0.853 + 0.521i)16-s + (0.222 + 0.974i)19-s + (−0.365 − 0.930i)21-s + (0.124 + 0.992i)25-s + (−0.826 − 0.563i)27-s + (0.661 − 0.749i)28-s − 1.93·31-s + (0.124 − 0.992i)36-s + (1.08 + 1.59i)37-s + ⋯ |
L(s) = 1 | + (−0.980 − 0.198i)3-s + (−0.270 − 0.962i)4-s + (0.542 + 0.840i)7-s + (0.921 + 0.388i)9-s + (0.0747 + 0.997i)12-s + (0.636 − 0.0317i)13-s + (−0.853 + 0.521i)16-s + (0.222 + 0.974i)19-s + (−0.365 − 0.930i)21-s + (0.124 + 0.992i)25-s + (−0.826 − 0.563i)27-s + (0.661 − 0.749i)28-s − 1.93·31-s + (0.124 − 0.992i)36-s + (1.08 + 1.59i)37-s + ⋯ |
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.922−0.385i)Λ(1−s)
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.922−0.385i)Λ(1−s)
Degree: |
2 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
0.922−0.385i
|
Analytic conductor: |
1.39388 |
Root analytic conductor: |
1.18063 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(2105,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2793, ( :0), 0.922−0.385i)
|
Particular Values
L(21) |
≈ |
0.8339362291 |
L(21) |
≈ |
0.8339362291 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.980+0.198i)T |
| 7 | 1+(−0.542−0.840i)T |
| 19 | 1+(−0.222−0.974i)T |
good | 2 | 1+(0.270+0.962i)T2 |
| 5 | 1+(−0.124−0.992i)T2 |
| 11 | 1+(−0.826−0.563i)T2 |
| 13 | 1+(−0.636+0.0317i)T+(0.995−0.0995i)T2 |
| 17 | 1+(−0.853−0.521i)T2 |
| 23 | 1+(0.0249+0.999i)T2 |
| 29 | 1+(0.980+0.198i)T2 |
| 31 | 1+1.93T+T2 |
| 37 | 1+(−1.08−1.59i)T+(−0.365+0.930i)T2 |
| 41 | 1+(0.124+0.992i)T2 |
| 43 | 1+(−0.0459−1.84i)T+(−0.998+0.0498i)T2 |
| 47 | 1+(0.995−0.0995i)T2 |
| 53 | 1+(−0.853+0.521i)T2 |
| 59 | 1+(−0.542−0.840i)T2 |
| 61 | 1+(−0.0491+0.491i)T+(−0.980−0.198i)T2 |
| 67 | 1+(−1.21+1.45i)T+(−0.173−0.984i)T2 |
| 71 | 1+(−0.661−0.749i)T2 |
| 73 | 1+(−1.27+0.653i)T+(0.583−0.811i)T2 |
| 79 | 1+(−0.623+1.71i)T+(−0.766−0.642i)T2 |
| 83 | 1+(0.0747+0.997i)T2 |
| 89 | 1+(−0.270+0.962i)T2 |
| 97 | 1+(1.37+0.501i)T+(0.766+0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.259383982642252335594656117193, −8.235376078627687899570051002470, −7.51905691990990773666212728411, −6.34915479228192493032173901219, −6.01591521895240884979290455733, −5.20371070758442315430413488461, −4.72904419198952320915193149711, −3.54013988646514979016592668277, −1.95500006417666435964194268237, −1.24868188878037167382302090498,
0.70132182927891253542825197811, 2.24310572280930145318567243242, 3.73694432512212714613567355278, 4.08261515862209721595071824226, 4.99877620191415591400316710017, 5.75233789968669131798530676574, 6.97194927915596395605240174877, 7.18232206404451035524621949586, 8.142160870330001531121584681027, 8.920563611207270525620761141383