L(s) = 1 | + (−0.781 + 0.623i)2-s + (−0.580 − 1.63i)3-s + (0.222 − 0.974i)4-s + (−3.14 + 1.51i)5-s + (1.47 + 0.913i)6-s + (2.47 + 0.926i)7-s + (0.433 + 0.900i)8-s + (−2.32 + 1.89i)9-s + (1.51 − 3.14i)10-s + (1.47 − 1.17i)11-s + (−1.72 + 0.202i)12-s + (−0.731 + 0.583i)13-s + (−2.51 + 0.820i)14-s + (4.30 + 4.25i)15-s + (−0.900 − 0.433i)16-s + (1.24 + 5.43i)17-s + ⋯ |
L(s) = 1 | + (−0.552 + 0.440i)2-s + (−0.335 − 0.942i)3-s + (0.111 − 0.487i)4-s + (−1.40 + 0.678i)5-s + (0.600 + 0.373i)6-s + (0.936 + 0.350i)7-s + (0.153 + 0.318i)8-s + (−0.775 + 0.631i)9-s + (0.479 − 0.996i)10-s + (0.445 − 0.355i)11-s + (−0.496 + 0.0585i)12-s + (−0.202 + 0.161i)13-s + (−0.672 + 0.219i)14-s + (1.11 + 1.09i)15-s + (−0.225 − 0.108i)16-s + (0.301 + 1.31i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.243 - 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.243 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.498257 + 0.388685i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.498257 + 0.388685i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.781 - 0.623i)T \) |
| 3 | \( 1 + (0.580 + 1.63i)T \) |
| 7 | \( 1 + (-2.47 - 0.926i)T \) |
good | 5 | \( 1 + (3.14 - 1.51i)T + (3.11 - 3.90i)T^{2} \) |
| 11 | \( 1 + (-1.47 + 1.17i)T + (2.44 - 10.7i)T^{2} \) |
| 13 | \( 1 + (0.731 - 0.583i)T + (2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + (-1.24 - 5.43i)T + (-15.3 + 7.37i)T^{2} \) |
| 19 | \( 1 - 6.71iT - 19T^{2} \) |
| 23 | \( 1 + (-5.84 - 1.33i)T + (20.7 + 9.97i)T^{2} \) |
| 29 | \( 1 + (-0.519 + 0.118i)T + (26.1 - 12.5i)T^{2} \) |
| 31 | \( 1 - 5.34iT - 31T^{2} \) |
| 37 | \( 1 + (-0.612 - 2.68i)T + (-33.3 + 16.0i)T^{2} \) |
| 41 | \( 1 + (1.61 - 0.777i)T + (25.5 - 32.0i)T^{2} \) |
| 43 | \( 1 + (9.41 + 4.53i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (7.08 + 8.88i)T + (-10.4 + 45.8i)T^{2} \) |
| 53 | \( 1 + (5.46 + 1.24i)T + (47.7 + 22.9i)T^{2} \) |
| 59 | \( 1 + (-0.981 - 0.472i)T + (36.7 + 46.1i)T^{2} \) |
| 61 | \( 1 + (-4.27 + 0.975i)T + (54.9 - 26.4i)T^{2} \) |
| 67 | \( 1 + 9.15T + 67T^{2} \) |
| 71 | \( 1 + (-5.70 - 1.30i)T + (63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (-1.01 - 0.808i)T + (16.2 + 71.1i)T^{2} \) |
| 79 | \( 1 - 15.3T + 79T^{2} \) |
| 83 | \( 1 + (9.92 - 12.4i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (6.59 - 8.26i)T + (-19.8 - 86.7i)T^{2} \) |
| 97 | \( 1 + 7.02iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.78484288559739730392795366238, −11.21137825767593250102309621648, −10.33905364253900924564896339794, −8.474585320008620934760324513639, −8.180306922487351239671132643403, −7.23662883521428122109256628088, −6.38886125704584341150272421176, −5.15278803020394189002166341833, −3.50769482688225769727492445708, −1.56383304850974682905679116151,
0.63894086524695306657206939858, 3.15639485500433124885669418187, 4.52602556208582595280854484064, 4.87730489534937937848323494401, 7.01579240093803431488456989334, 7.939643819978705402786835378509, 8.892247687688822880825720066494, 9.598919014796610654428323728251, 10.93242132426393762104400484456, 11.44947925990528168429847592386