L(s) = 1 | + (−0.891 + 0.453i)2-s + (0.587 − 0.809i)4-s + (−0.987 − 0.156i)5-s + (−0.156 + 0.987i)8-s + (0.951 − 0.309i)10-s + (−0.896 + 1.76i)13-s + (−0.309 − 0.951i)16-s + (1.87 + 0.297i)17-s + (−0.707 + 0.707i)20-s + (0.951 + 0.309i)25-s − 1.97i·26-s + (1.44 + 1.04i)29-s + (0.707 + 0.707i)32-s + (−1.80 + 0.587i)34-s + (0.809 + 0.412i)37-s + ⋯ |
L(s) = 1 | + (−0.891 + 0.453i)2-s + (0.587 − 0.809i)4-s + (−0.987 − 0.156i)5-s + (−0.156 + 0.987i)8-s + (0.951 − 0.309i)10-s + (−0.896 + 1.76i)13-s + (−0.309 − 0.951i)16-s + (1.87 + 0.297i)17-s + (−0.707 + 0.707i)20-s + (0.951 + 0.309i)25-s − 1.97i·26-s + (1.44 + 1.04i)29-s + (0.707 + 0.707i)32-s + (−1.80 + 0.587i)34-s + (0.809 + 0.412i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.356 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.356 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5370348359\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5370348359\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.891 - 0.453i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.987 + 0.156i)T \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.896 - 1.76i)T + (-0.587 - 0.809i)T^{2} \) |
| 17 | \( 1 + (-1.87 - 0.297i)T + (0.951 + 0.309i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 29 | \( 1 + (-1.44 - 1.04i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.809 - 0.412i)T + (0.587 + 0.809i)T^{2} \) |
| 41 | \( 1 + (0.297 - 0.0966i)T + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 53 | \( 1 + (1.16 - 0.183i)T + (0.951 - 0.309i)T^{2} \) |
| 59 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.363 - 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 71 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.278 - 0.142i)T + (0.587 - 0.809i)T^{2} \) |
| 79 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 89 | \( 1 + (0.280 - 0.863i)T + (-0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (1.76 - 0.278i)T + (0.951 - 0.309i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25533520458262273922590206509, −9.577687336697017679990293943432, −8.703030138584828463305306620173, −7.967875545285242817702062677209, −7.21039953847556823222320527991, −6.53103093691612159409917816161, −5.27320367621786531408599916330, −4.36930043618597602290040361502, −2.97849505773504656027527218061, −1.39622071123164531093632587568,
0.800737410943779763670657227828, 2.77181975301344430612239502277, 3.37061683995461990215091699819, 4.68538096177814200061650787726, 5.93040802236101095765148118835, 7.18340668232805453593223807273, 7.943759655829877788392517519113, 8.137920939482265566060771261649, 9.530535003300153030407508728559, 10.14187416871903901768840820021