L(s) = 1 | + (0.809 − 0.587i)2-s − 5-s + (−0.309 + 0.951i)7-s + (0.309 + 0.951i)8-s + (0.309 + 0.951i)9-s + (−0.809 + 0.587i)10-s + (0.309 + 0.951i)14-s + (0.809 + 0.587i)16-s + (0.809 + 0.587i)18-s + (0.809 − 0.587i)19-s + (0.309 − 0.951i)35-s + (0.309 − 0.951i)38-s + (−0.309 − 0.951i)40-s + (0.809 − 0.587i)41-s + (−0.309 − 0.951i)45-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)2-s − 5-s + (−0.309 + 0.951i)7-s + (0.309 + 0.951i)8-s + (0.309 + 0.951i)9-s + (−0.809 + 0.587i)10-s + (0.309 + 0.951i)14-s + (0.809 + 0.587i)16-s + (0.809 + 0.587i)18-s + (0.809 − 0.587i)19-s + (0.309 − 0.951i)35-s + (0.309 − 0.951i)38-s + (−0.309 − 0.951i)40-s + (0.809 − 0.587i)41-s + (−0.309 − 0.951i)45-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)(0.800−0.599i)Λ(1−s)
Λ(s)=(=(961s/2ΓC(s)L(s)(0.800−0.599i)Λ(1−s)
Degree: |
2 |
Conductor: |
961
= 312
|
Sign: |
0.800−0.599i
|
Analytic conductor: |
0.479601 |
Root analytic conductor: |
0.692532 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ961(573,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 961, ( :0), 0.800−0.599i)
|
Particular Values
L(21) |
≈ |
1.218300149 |
L(21) |
≈ |
1.218300149 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
| 3 | 1+(−0.309−0.951i)T2 |
| 5 | 1+T+T2 |
| 7 | 1+(0.309−0.951i)T+(−0.809−0.587i)T2 |
| 11 | 1+(0.809+0.587i)T2 |
| 13 | 1+(−0.309−0.951i)T2 |
| 17 | 1+(0.809−0.587i)T2 |
| 19 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
| 23 | 1+(0.809−0.587i)T2 |
| 29 | 1+(−0.309+0.951i)T2 |
| 37 | 1−T2 |
| 41 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
| 43 | 1+(−0.309+0.951i)T2 |
| 47 | 1+(1.61+1.17i)T+(0.309+0.951i)T2 |
| 53 | 1+(0.809−0.587i)T2 |
| 59 | 1+(−0.809−0.587i)T+(0.309+0.951i)T2 |
| 61 | 1−T2 |
| 67 | 1−2T+T2 |
| 71 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 73 | 1+(0.809+0.587i)T2 |
| 79 | 1+(0.809−0.587i)T2 |
| 83 | 1+(−0.309+0.951i)T2 |
| 89 | 1+(0.809+0.587i)T2 |
| 97 | 1+(0.309−0.951i)T+(−0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.62321659388754841866965603933, −9.520881951687328372734467396747, −8.500118979968597322051741501239, −7.892758070131895069074756497659, −7.03021885067196271822906544245, −5.61640950188835646776086368368, −4.92070586494791923869689276324, −3.99992463075727683850497885626, −3.07408450536182380060690743409, −2.12279685446713081119735335241,
0.990534801976033516665361488151, 3.41600072498515458727613160522, 3.91402161414175759583179288958, 4.74563035446808683017939455733, 5.90119211391729129107191851526, 6.74687668537547120398363177976, 7.36202380002155801657416394872, 8.162678412961214099815384512034, 9.545013209075178272523631630261, 9.972325190319962556273292130807