Properties

Label 2-350-1.1-c3-0-22
Degree $2$
Conductor $350$
Sign $-1$
Analytic cond. $20.6506$
Root an. cond. $4.54430$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4·3-s + 4·4-s − 8·6-s − 7·7-s + 8·8-s − 11·9-s + 60·11-s − 16·12-s − 38·13-s − 14·14-s + 16·16-s − 42·17-s − 22·18-s − 52·19-s + 28·21-s + 120·22-s − 120·23-s − 32·24-s − 76·26-s + 152·27-s − 28·28-s − 234·29-s − 304·31-s + 32·32-s − 240·33-s − 84·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.769·3-s + 1/2·4-s − 0.544·6-s − 0.377·7-s + 0.353·8-s − 0.407·9-s + 1.64·11-s − 0.384·12-s − 0.810·13-s − 0.267·14-s + 1/4·16-s − 0.599·17-s − 0.288·18-s − 0.627·19-s + 0.290·21-s + 1.16·22-s − 1.08·23-s − 0.272·24-s − 0.573·26-s + 1.08·27-s − 0.188·28-s − 1.49·29-s − 1.76·31-s + 0.176·32-s − 1.26·33-s − 0.423·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(20.6506\)
Root analytic conductor: \(4.54430\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 350,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
5 \( 1 \)
7 \( 1 + p T \)
good3 \( 1 + 4 T + p^{3} T^{2} \)
11 \( 1 - 60 T + p^{3} T^{2} \)
13 \( 1 + 38 T + p^{3} T^{2} \)
17 \( 1 + 42 T + p^{3} T^{2} \)
19 \( 1 + 52 T + p^{3} T^{2} \)
23 \( 1 + 120 T + p^{3} T^{2} \)
29 \( 1 + 234 T + p^{3} T^{2} \)
31 \( 1 + 304 T + p^{3} T^{2} \)
37 \( 1 - 106 T + p^{3} T^{2} \)
41 \( 1 + 54 T + p^{3} T^{2} \)
43 \( 1 - 196 T + p^{3} T^{2} \)
47 \( 1 + 336 T + p^{3} T^{2} \)
53 \( 1 + 438 T + p^{3} T^{2} \)
59 \( 1 + 444 T + p^{3} T^{2} \)
61 \( 1 - 38 T + p^{3} T^{2} \)
67 \( 1 - 988 T + p^{3} T^{2} \)
71 \( 1 + 720 T + p^{3} T^{2} \)
73 \( 1 + 2 p T + p^{3} T^{2} \)
79 \( 1 + 808 T + p^{3} T^{2} \)
83 \( 1 + 612 T + p^{3} T^{2} \)
89 \( 1 - 1146 T + p^{3} T^{2} \)
97 \( 1 - 70 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.01134479195513610671450819676, −9.750552157819167196193556983835, −8.859944742364187782911867263387, −7.39210064155521959827008538110, −6.42049730348402531031518873779, −5.79182796448254136711944431958, −4.56583699129886552541421384600, −3.55767192260810315828251616378, −1.93982667360229045690498247808, 0, 1.93982667360229045690498247808, 3.55767192260810315828251616378, 4.56583699129886552541421384600, 5.79182796448254136711944431958, 6.42049730348402531031518873779, 7.39210064155521959827008538110, 8.859944742364187782911867263387, 9.750552157819167196193556983835, 11.01134479195513610671450819676

Graph of the $Z$-function along the critical line