L(s) = 1 | + (−0.939 + 0.342i)2-s + (−0.0975 + 0.267i)3-s + (0.766 − 0.642i)4-s + (−2.23 − 0.121i)5-s − 0.285i·6-s + (−3.86 + 0.681i)7-s + (−0.500 + 0.866i)8-s + (2.23 + 1.87i)9-s + (2.13 − 0.649i)10-s + (2.37 − 4.10i)11-s + (0.0975 + 0.267i)12-s + (3.78 − 3.17i)13-s + (3.39 − 1.96i)14-s + (0.250 − 0.586i)15-s + (0.173 − 0.984i)16-s + (0.839 + 0.704i)17-s + ⋯ |
L(s) = 1 | + (−0.664 + 0.241i)2-s + (−0.0562 + 0.154i)3-s + (0.383 − 0.321i)4-s + (−0.998 − 0.0541i)5-s − 0.116i·6-s + (−1.46 + 0.257i)7-s + (−0.176 + 0.306i)8-s + (0.745 + 0.625i)9-s + (0.676 − 0.205i)10-s + (0.715 − 1.23i)11-s + (0.0281 + 0.0773i)12-s + (1.05 − 0.881i)13-s + (0.908 − 0.524i)14-s + (0.0645 − 0.151i)15-s + (0.0434 − 0.246i)16-s + (0.203 + 0.170i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.580 + 0.813i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.580 + 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.573024 - 0.295044i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.573024 - 0.295044i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.939 - 0.342i)T \) |
| 5 | \( 1 + (2.23 + 0.121i)T \) |
| 37 | \( 1 + (1.98 + 5.74i)T \) |
good | 3 | \( 1 + (0.0975 - 0.267i)T + (-2.29 - 1.92i)T^{2} \) |
| 7 | \( 1 + (3.86 - 0.681i)T + (6.57 - 2.39i)T^{2} \) |
| 11 | \( 1 + (-2.37 + 4.10i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.78 + 3.17i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (-0.839 - 0.704i)T + (2.95 + 16.7i)T^{2} \) |
| 19 | \( 1 + (-2.10 + 5.79i)T + (-14.5 - 12.2i)T^{2} \) |
| 23 | \( 1 + (3.19 + 5.53i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.58 + 2.64i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 1.56iT - 31T^{2} \) |
| 41 | \( 1 + (6.32 - 5.31i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 - 9.58T + 43T^{2} \) |
| 47 | \( 1 + (-7.68 + 4.43i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.04 - 0.360i)T + (49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (7.40 + 1.30i)T + (55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (-5.48 - 6.53i)T + (-10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (3.23 - 0.571i)T + (62.9 - 22.9i)T^{2} \) |
| 71 | \( 1 + (13.2 + 4.81i)T + (54.3 + 45.6i)T^{2} \) |
| 73 | \( 1 + 2.00iT - 73T^{2} \) |
| 79 | \( 1 + (-12.7 + 2.25i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (0.774 - 0.923i)T + (-14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (2.09 + 0.370i)T + (83.6 + 30.4i)T^{2} \) |
| 97 | \( 1 + (-5.07 - 8.78i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99697441120154127626229571284, −10.43533791530982420889011092465, −9.234154566980578125552944093666, −8.585012311934367399466400536007, −7.56331706235386900738058489466, −6.59049138441800804499479428226, −5.69195905471868281686337108467, −4.01922856354332654356304627904, −3.02540383938928327248472834205, −0.60368203607659798131279375495,
1.43496334104825245265035724596, 3.59451254691994132347341030362, 3.97465962613842656995020779400, 6.17042662098293291889416484584, 7.02060347996509357425849800934, 7.60303104622214761877691140024, 9.061330733201621426678026000997, 9.623088749135040985588830043247, 10.43580575877475140539016390978, 11.74018463814146192703894625092