L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + i·7-s + 0.999i·8-s + (0.5 + 0.866i)9-s − 11-s + (1.73 − i)13-s + (−0.5 + 0.866i)14-s + (−0.5 + 0.866i)16-s + 0.999i·18-s + (0.5 − 0.866i)19-s + (−0.866 − 0.5i)22-s + (−0.866 + 0.5i)23-s + 1.99·26-s + (−0.866 + 0.499i)28-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + i·7-s + 0.999i·8-s + (0.5 + 0.866i)9-s − 11-s + (1.73 − i)13-s + (−0.5 + 0.866i)14-s + (−0.5 + 0.866i)16-s + 0.999i·18-s + (0.5 − 0.866i)19-s + (−0.866 − 0.5i)22-s + (−0.866 + 0.5i)23-s + 1.99·26-s + (−0.866 + 0.499i)28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.211 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.211 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.237859185\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.237859185\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 - iT - T^{2} \) |
| 11 | \( 1 + T + T^{2} \) |
| 13 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - iT - T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.428761861482699882193894562517, −8.154490171165269135437796560112, −7.46267607951210365773007206612, −6.47632951692374417876519499215, −5.73851315685485723796054475412, −5.28227786592011338161968098677, −4.52470547421764747266098938803, −3.41227592284891481411068724519, −2.76902908826341043465858410111, −1.76748742974104671036151173035,
1.01708103101501137684679887016, 1.90659575792252689265234237592, 3.23533613497745801465096609311, 3.91660813955462596166632400786, 4.32608151548375150930967587697, 5.45793327016459922882346401632, 6.23028220204478854160434697400, 6.74940506641070607224091097162, 7.58508436093900464672725234231, 8.447204416373063899717721441716