L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + i·7-s + 0.999i·8-s + (0.5 + 0.866i)9-s − 11-s + (1.73 − i)13-s + (−0.5 + 0.866i)14-s + (−0.5 + 0.866i)16-s + 0.999i·18-s + (0.5 − 0.866i)19-s + (−0.866 − 0.5i)22-s + (−0.866 + 0.5i)23-s + 1.99·26-s + (−0.866 + 0.499i)28-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + i·7-s + 0.999i·8-s + (0.5 + 0.866i)9-s − 11-s + (1.73 − i)13-s + (−0.5 + 0.866i)14-s + (−0.5 + 0.866i)16-s + 0.999i·18-s + (0.5 − 0.866i)19-s + (−0.866 − 0.5i)22-s + (−0.866 + 0.5i)23-s + 1.99·26-s + (−0.866 + 0.499i)28-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.211−0.977i)Λ(1−s)
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.211−0.977i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.211−0.977i
|
Analytic conductor: |
1.89644 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3051,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :0), −0.211−0.977i)
|
Particular Values
L(21) |
≈ |
2.237859185 |
L(21) |
≈ |
2.237859185 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 5 | 1 |
| 19 | 1+(−0.5+0.866i)T |
good | 3 | 1+(−0.5−0.866i)T2 |
| 7 | 1−iT−T2 |
| 11 | 1+T+T2 |
| 13 | 1+(−1.73+i)T+(0.5−0.866i)T2 |
| 17 | 1+(−0.5−0.866i)T2 |
| 23 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1−T2 |
| 37 | 1−iT−T2 |
| 41 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 43 | 1+(−0.5−0.866i)T2 |
| 47 | 1+(1.73−i)T+(0.5−0.866i)T2 |
| 53 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 59 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+(−0.5−0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 97 | 1+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.428761861482699882193894562517, −8.154490171165269135437796560112, −7.46267607951210365773007206612, −6.47632951692374417876519499215, −5.73851315685485723796054475412, −5.28227786592011338161968098677, −4.52470547421764747266098938803, −3.41227592284891481411068724519, −2.76902908826341043465858410111, −1.76748742974104671036151173035,
1.01708103101501137684679887016, 1.90659575792252689265234237592, 3.23533613497745801465096609311, 3.91660813955462596166632400786, 4.32608151548375150930967587697, 5.45793327016459922882346401632, 6.23028220204478854160434697400, 6.74940506641070607224091097162, 7.58508436093900464672725234231, 8.447204416373063899717721441716