L(s) = 1 | + i·3-s + i·5-s − 9-s − 15-s − 2·23-s − 25-s − i·27-s + 2i·29-s + 2i·43-s − i·45-s − 2·47-s + 49-s − 2i·67-s − 2i·69-s − i·75-s + ⋯ |
L(s) = 1 | + i·3-s + i·5-s − 9-s − 15-s − 2·23-s − 25-s − i·27-s + 2i·29-s + 2i·43-s − i·45-s − 2·47-s + 49-s − 2i·67-s − 2i·69-s − i·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7884684498\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7884684498\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 - iT \) |
good | 7 | \( 1 - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + 2T + T^{2} \) |
| 29 | \( 1 - 2iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 2iT - T^{2} \) |
| 47 | \( 1 + 2T + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + 2iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.216061643017827151685357204053, −8.242222367061072285081183185936, −7.72526127635164750337061291731, −6.64609269182756929758085144868, −6.12027935400059718055719539966, −5.25569824908587430681230772475, −4.41608918204204362273344335240, −3.56136538980186347254417880380, −2.98583776041186282921870236072, −1.89936579663403351428624598486,
0.41810476472220982023342676168, 1.70622497737331762722787107917, 2.38858856766795997831811408380, 3.72158536537594341473587194973, 4.47492287836252459085782255554, 5.59367011314544884610359236579, 5.93761356620416056139961672163, 6.87024597621971873922727212485, 7.72450357588659115424928528501, 8.237249478880239461388427468817