L(s) = 1 | + (−0.540 − 0.841i)2-s + (0.707 − 0.707i)3-s + (−0.415 + 0.909i)4-s + (1.91 − 0.562i)5-s + (−0.977 − 0.212i)6-s + (−0.755 + 0.654i)7-s + (0.989 − 0.142i)8-s − 1.00i·9-s + (−1.50 − 1.30i)10-s + (0.349 + 0.936i)12-s + (−0.278 + 0.321i)13-s + (0.959 + 0.281i)14-s + (0.956 − 1.75i)15-s + (−0.654 − 0.755i)16-s + (−0.841 + 0.540i)18-s + (−0.871 − 0.398i)19-s + ⋯ |
L(s) = 1 | + (−0.540 − 0.841i)2-s + (0.707 − 0.707i)3-s + (−0.415 + 0.909i)4-s + (1.91 − 0.562i)5-s + (−0.977 − 0.212i)6-s + (−0.755 + 0.654i)7-s + (0.989 − 0.142i)8-s − 1.00i·9-s + (−1.50 − 1.30i)10-s + (0.349 + 0.936i)12-s + (−0.278 + 0.321i)13-s + (0.959 + 0.281i)14-s + (0.956 − 1.75i)15-s + (−0.654 − 0.755i)16-s + (−0.841 + 0.540i)18-s + (−0.871 − 0.398i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.420 + 0.907i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.420 + 0.907i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.547802298\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.547802298\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.540 + 0.841i)T \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 7 | \( 1 + (0.755 - 0.654i)T \) |
| 23 | \( 1 + (-0.654 + 0.755i)T \) |
good | 5 | \( 1 + (-1.91 + 0.562i)T + (0.841 - 0.540i)T^{2} \) |
| 11 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 13 | \( 1 + (0.278 - 0.321i)T + (-0.142 - 0.989i)T^{2} \) |
| 17 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 19 | \( 1 + (0.871 + 0.398i)T + (0.654 + 0.755i)T^{2} \) |
| 29 | \( 1 + (-0.654 + 0.755i)T^{2} \) |
| 31 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 37 | \( 1 + (0.841 + 0.540i)T^{2} \) |
| 41 | \( 1 + (0.841 - 0.540i)T^{2} \) |
| 43 | \( 1 + (-0.959 - 0.281i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 59 | \( 1 + (1.32 + 1.14i)T + (0.142 + 0.989i)T^{2} \) |
| 61 | \( 1 + (-1.39 + 0.201i)T + (0.959 - 0.281i)T^{2} \) |
| 67 | \( 1 + (0.415 - 0.909i)T^{2} \) |
| 71 | \( 1 + (-0.909 - 1.41i)T + (-0.415 + 0.909i)T^{2} \) |
| 73 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 79 | \( 1 + (0.627 + 0.544i)T + (0.142 + 0.989i)T^{2} \) |
| 83 | \( 1 + (-1.79 - 0.527i)T + (0.841 + 0.540i)T^{2} \) |
| 89 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 97 | \( 1 + (0.841 - 0.540i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.821909880058964407590623421959, −8.048907810174124362626690511268, −6.74888233435351057078185728266, −6.51952637045638658912421679885, −5.46999313127439177149571003756, −4.57831380701445038584586468137, −3.32081032384532053714761543635, −2.33165367268574661940092678457, −2.20364534909946057908149406721, −1.00653569122493925622874012889,
1.52983133232425032106895364990, 2.47632888704576036621912572059, 3.39685752099703061172678966276, 4.53101611670198899459677098294, 5.39534457030124459911991299071, 5.98163567304708391145265674894, 6.74249705551816288855145573541, 7.32863689279373450907660193772, 8.255523750147351069847991209314, 9.169430813776084162407891953355