Properties

Label 2-3e4-81.13-c1-0-1
Degree $2$
Conductor $81$
Sign $0.913 + 0.405i$
Analytic cond. $0.646788$
Root an. cond. $0.804231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.38 − 1.19i)2-s + (1.71 − 0.238i)3-s + (3.06 + 4.11i)4-s + (0.727 + 2.42i)5-s + (−4.37 − 1.48i)6-s + (0.202 + 0.469i)7-s + (−1.44 − 8.22i)8-s + (2.88 − 0.817i)9-s + (1.17 − 6.66i)10-s + (1.49 − 0.354i)11-s + (6.23 + 6.32i)12-s + (−4.71 − 3.09i)13-s + (0.0793 − 1.36i)14-s + (1.82 + 3.99i)15-s + (−3.45 + 11.5i)16-s + (−1.33 + 0.484i)17-s + ⋯
L(s)  = 1  + (−1.68 − 0.847i)2-s + (0.990 − 0.137i)3-s + (1.53 + 2.05i)4-s + (0.325 + 1.08i)5-s + (−1.78 − 0.607i)6-s + (0.0764 + 0.177i)7-s + (−0.512 − 2.90i)8-s + (0.962 − 0.272i)9-s + (0.371 − 2.10i)10-s + (0.450 − 0.106i)11-s + (1.79 + 1.82i)12-s + (−1.30 − 0.859i)13-s + (0.0211 − 0.363i)14-s + (0.471 + 1.03i)15-s + (−0.862 + 2.88i)16-s + (−0.322 + 0.117i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.405i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.913 + 0.405i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.913 + 0.405i$
Analytic conductor: \(0.646788\)
Root analytic conductor: \(0.804231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :1/2),\ 0.913 + 0.405i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.635427 - 0.134736i\)
\(L(\frac12)\) \(\approx\) \(0.635427 - 0.134736i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.71 + 0.238i)T \)
good2 \( 1 + (2.38 + 1.19i)T + (1.19 + 1.60i)T^{2} \)
5 \( 1 + (-0.727 - 2.42i)T + (-4.17 + 2.74i)T^{2} \)
7 \( 1 + (-0.202 - 0.469i)T + (-4.80 + 5.09i)T^{2} \)
11 \( 1 + (-1.49 + 0.354i)T + (9.82 - 4.93i)T^{2} \)
13 \( 1 + (4.71 + 3.09i)T + (5.14 + 11.9i)T^{2} \)
17 \( 1 + (1.33 - 0.484i)T + (13.0 - 10.9i)T^{2} \)
19 \( 1 + (-0.986 - 0.359i)T + (14.5 + 12.2i)T^{2} \)
23 \( 1 + (-0.103 + 0.239i)T + (-15.7 - 16.7i)T^{2} \)
29 \( 1 + (0.103 + 1.77i)T + (-28.8 + 3.36i)T^{2} \)
31 \( 1 + (5.13 - 0.599i)T + (30.1 - 7.14i)T^{2} \)
37 \( 1 + (5.04 + 4.23i)T + (6.42 + 36.4i)T^{2} \)
41 \( 1 + (6.03 - 3.03i)T + (24.4 - 32.8i)T^{2} \)
43 \( 1 + (-4.19 - 4.44i)T + (-2.50 + 42.9i)T^{2} \)
47 \( 1 + (7.26 + 0.848i)T + (45.7 + 10.8i)T^{2} \)
53 \( 1 + (-4.74 + 8.21i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (4.82 + 1.14i)T + (52.7 + 26.4i)T^{2} \)
61 \( 1 + (7.70 - 10.3i)T + (-17.4 - 58.4i)T^{2} \)
67 \( 1 + (0.373 - 6.40i)T + (-66.5 - 7.77i)T^{2} \)
71 \( 1 + (0.896 - 5.08i)T + (-66.7 - 24.2i)T^{2} \)
73 \( 1 + (1.03 + 5.87i)T + (-68.5 + 24.9i)T^{2} \)
79 \( 1 + (-8.88 - 4.46i)T + (47.1 + 63.3i)T^{2} \)
83 \( 1 + (-11.5 - 5.81i)T + (49.5 + 66.5i)T^{2} \)
89 \( 1 + (1.71 + 9.71i)T + (-83.6 + 30.4i)T^{2} \)
97 \( 1 + (-1.03 + 3.44i)T + (-81.0 - 53.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.45824782597288216743762711666, −12.93474703720603036537414548147, −11.83453856866474517104425680103, −10.54416872078330315062874548976, −9.875789373439421969078153618594, −8.873487758739507447784824122875, −7.71204132256759362126205523326, −6.87117131731274078451387433775, −3.27278229191209588631189980987, −2.19511514743989928642532476910, 1.78469531244498435919842016086, 4.94988147862899352730689825929, 6.84795445479317731198182949351, 7.80711125731332191315600769670, 9.158984850424488719297315832303, 9.213650461005199371679324396116, 10.49517277142775370025351514899, 12.17489699228281643123589045754, 13.80364620890676650629480692807, 14.75741118556724189615965075556

Graph of the $Z$-function along the critical line