Properties

Label 2-3e5-243.103-c1-0-0
Degree $2$
Conductor $243$
Sign $-0.899 - 0.437i$
Analytic cond. $1.94036$
Root an. cond. $1.39296$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.24 − 0.626i)2-s + (−1.63 + 0.569i)3-s + (2.95 + 1.78i)4-s + (−0.812 + 0.0315i)5-s + (4.03 − 0.255i)6-s + (1.20 + 0.188i)7-s + (−2.32 − 2.46i)8-s + (2.35 − 1.86i)9-s + (1.84 + 0.437i)10-s + (−0.262 − 1.91i)11-s + (−5.84 − 1.23i)12-s + (−1.56 + 2.28i)13-s + (−2.59 − 1.18i)14-s + (1.31 − 0.514i)15-s + (0.466 + 0.885i)16-s + (−3.40 + 1.71i)17-s + ⋯
L(s)  = 1  + (−1.59 − 0.442i)2-s + (−0.944 + 0.328i)3-s + (1.47 + 0.891i)4-s + (−0.363 + 0.0141i)5-s + (1.64 − 0.104i)6-s + (0.456 + 0.0714i)7-s + (−0.821 − 0.870i)8-s + (0.784 − 0.620i)9-s + (0.584 + 0.138i)10-s + (−0.0790 − 0.578i)11-s + (−1.68 − 0.356i)12-s + (−0.435 + 0.634i)13-s + (−0.694 − 0.315i)14-s + (0.338 − 0.132i)15-s + (0.116 + 0.221i)16-s + (−0.826 + 0.415i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.899 - 0.437i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.899 - 0.437i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $-0.899 - 0.437i$
Analytic conductor: \(1.94036\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{243} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :1/2),\ -0.899 - 0.437i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0129418 + 0.0562259i\)
\(L(\frac12)\) \(\approx\) \(0.0129418 + 0.0562259i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.63 - 0.569i)T \)
good2 \( 1 + (2.24 + 0.626i)T + (1.71 + 1.03i)T^{2} \)
5 \( 1 + (0.812 - 0.0315i)T + (4.98 - 0.387i)T^{2} \)
7 \( 1 + (-1.20 - 0.188i)T + (6.66 + 2.13i)T^{2} \)
11 \( 1 + (0.262 + 1.91i)T + (-10.5 + 2.94i)T^{2} \)
13 \( 1 + (1.56 - 2.28i)T + (-4.68 - 12.1i)T^{2} \)
17 \( 1 + (3.40 - 1.71i)T + (10.1 - 13.6i)T^{2} \)
19 \( 1 + (0.0225 + 0.388i)T + (-18.8 + 2.20i)T^{2} \)
23 \( 1 + (1.72 - 4.46i)T + (-17.0 - 15.4i)T^{2} \)
29 \( 1 + (5.20 + 3.72i)T + (9.38 + 27.4i)T^{2} \)
31 \( 1 + (3.58 - 4.11i)T + (-4.19 - 30.7i)T^{2} \)
37 \( 1 + (5.86 + 7.87i)T + (-10.6 + 35.4i)T^{2} \)
41 \( 1 + (0.617 - 2.39i)T + (-35.8 - 19.8i)T^{2} \)
43 \( 1 + (-0.752 - 0.683i)T + (4.16 + 42.7i)T^{2} \)
47 \( 1 + (-1.84 - 2.11i)T + (-6.36 + 46.5i)T^{2} \)
53 \( 1 + (-1.44 + 8.21i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (0.578 - 0.236i)T + (42.1 - 41.3i)T^{2} \)
61 \( 1 + (-10.0 + 6.04i)T + (28.4 - 53.9i)T^{2} \)
67 \( 1 + (7.98 - 5.70i)T + (21.6 - 63.3i)T^{2} \)
71 \( 1 + (-2.59 - 8.68i)T + (-59.3 + 39.0i)T^{2} \)
73 \( 1 + (13.5 - 3.20i)T + (65.2 - 32.7i)T^{2} \)
79 \( 1 + (5.21 - 5.11i)T + (1.53 - 78.9i)T^{2} \)
83 \( 1 + (0.514 + 1.99i)T + (-72.6 + 40.0i)T^{2} \)
89 \( 1 + (1.84 - 6.16i)T + (-74.3 - 48.9i)T^{2} \)
97 \( 1 + (-5.74 - 0.222i)T + (96.7 + 7.51i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.74763450611340660329295383841, −11.43478053998375655993058571203, −10.63164978327255907530036115978, −9.678974977424885883485597322157, −8.868382448734379008714154926849, −7.76577544512156289997128968041, −6.84215135929274878347086949825, −5.44693140612956689608090900052, −3.92057128676201735724616797420, −1.82219242949097515913632380926, 0.084169613517225832505128920361, 1.88084239537315563411029374340, 4.56825927094708552702252152488, 5.90396367067859492401292104312, 7.09718527932638553110003738724, 7.61863738806051329886227754531, 8.654867635622152986861773495712, 9.847154240608536578185120846705, 10.59082615720682764693405024214, 11.38979235138088725020361503543

Graph of the $Z$-function along the critical line