Properties

Label 2-40-40.19-c4-0-7
Degree $2$
Conductor $40$
Sign $1$
Analytic cond. $4.13479$
Root an. cond. $2.03342$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s − 25·5-s + 62·7-s − 64·8-s + 81·9-s + 100·10-s + 82·11-s + 302·13-s − 248·14-s + 256·16-s − 324·18-s − 718·19-s − 400·20-s − 328·22-s + 382·23-s + 625·25-s − 1.20e3·26-s + 992·28-s − 1.02e3·32-s − 1.55e3·35-s + 1.29e3·36-s − 178·37-s + 2.87e3·38-s + 1.60e3·40-s + 2.72e3·41-s + 1.31e3·44-s + ⋯
L(s)  = 1  − 2-s + 4-s − 5-s + 1.26·7-s − 8-s + 9-s + 10-s + 0.677·11-s + 1.78·13-s − 1.26·14-s + 16-s − 18-s − 1.98·19-s − 20-s − 0.677·22-s + 0.722·23-s + 25-s − 1.78·26-s + 1.26·28-s − 32-s − 1.26·35-s + 36-s − 0.130·37-s + 1.98·38-s + 40-s + 1.61·41-s + 0.677·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40\)    =    \(2^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(4.13479\)
Root analytic conductor: \(2.03342\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: $\chi_{40} (19, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.023392494\)
\(L(\frac12)\) \(\approx\) \(1.023392494\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
5 \( 1 + p^{2} T \)
good3 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
7 \( 1 - 62 T + p^{4} T^{2} \)
11 \( 1 - 82 T + p^{4} T^{2} \)
13 \( 1 - 302 T + p^{4} T^{2} \)
17 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
19 \( 1 + 718 T + p^{4} T^{2} \)
23 \( 1 - 382 T + p^{4} T^{2} \)
29 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
31 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
37 \( 1 + 178 T + p^{4} T^{2} \)
41 \( 1 - 2722 T + p^{4} T^{2} \)
43 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
47 \( 1 + 2978 T + p^{4} T^{2} \)
53 \( 1 - 142 T + p^{4} T^{2} \)
59 \( 1 + 878 T + p^{4} T^{2} \)
61 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
67 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
71 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
73 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
79 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
83 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
89 \( 1 + 15518 T + p^{4} T^{2} \)
97 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.54346536275983412121612948086, −14.70730012669196630884977867739, −12.73061169882321043276402300398, −11.33675700637765922171807742941, −10.75922244240065128286245012570, −8.835856296302565913991277164935, −7.996098955568951993805620055088, −6.61312896302109683748439442892, −4.12356861056942998375626217552, −1.34928882601782603791351089400, 1.34928882601782603791351089400, 4.12356861056942998375626217552, 6.61312896302109683748439442892, 7.996098955568951993805620055088, 8.835856296302565913991277164935, 10.75922244240065128286245012570, 11.33675700637765922171807742941, 12.73061169882321043276402300398, 14.70730012669196630884977867739, 15.54346536275983412121612948086

Graph of the $Z$-function along the critical line