Properties

Label 2-435-1.1-c3-0-31
Degree $2$
Conductor $435$
Sign $-1$
Analytic cond. $25.6658$
Root an. cond. $5.06614$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.12·2-s + 3·3-s + 18.2·4-s − 5·5-s − 15.3·6-s − 21.7·7-s − 52.5·8-s + 9·9-s + 25.6·10-s + 57.1·11-s + 54.7·12-s − 41.2·13-s + 111.·14-s − 15·15-s + 123.·16-s + 73.0·17-s − 46.1·18-s − 0.658·19-s − 91.2·20-s − 65.2·21-s − 292.·22-s − 96.1·23-s − 157.·24-s + 25·25-s + 211.·26-s + 27·27-s − 397.·28-s + ⋯
L(s)  = 1  − 1.81·2-s + 0.577·3-s + 2.28·4-s − 0.447·5-s − 1.04·6-s − 1.17·7-s − 2.32·8-s + 0.333·9-s + 0.810·10-s + 1.56·11-s + 1.31·12-s − 0.879·13-s + 2.12·14-s − 0.258·15-s + 1.92·16-s + 1.04·17-s − 0.603·18-s − 0.00795·19-s − 1.02·20-s − 0.678·21-s − 2.83·22-s − 0.871·23-s − 1.34·24-s + 0.200·25-s + 1.59·26-s + 0.192·27-s − 2.68·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(25.6658\)
Root analytic conductor: \(5.06614\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 435,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
5 \( 1 + 5T \)
29 \( 1 + 29T \)
good2 \( 1 + 5.12T + 8T^{2} \)
7 \( 1 + 21.7T + 343T^{2} \)
11 \( 1 - 57.1T + 1.33e3T^{2} \)
13 \( 1 + 41.2T + 2.19e3T^{2} \)
17 \( 1 - 73.0T + 4.91e3T^{2} \)
19 \( 1 + 0.658T + 6.85e3T^{2} \)
23 \( 1 + 96.1T + 1.21e4T^{2} \)
31 \( 1 + 2.01T + 2.97e4T^{2} \)
37 \( 1 + 315.T + 5.06e4T^{2} \)
41 \( 1 - 219.T + 6.89e4T^{2} \)
43 \( 1 - 81.2T + 7.95e4T^{2} \)
47 \( 1 - 440.T + 1.03e5T^{2} \)
53 \( 1 - 65.8T + 1.48e5T^{2} \)
59 \( 1 + 551.T + 2.05e5T^{2} \)
61 \( 1 + 149.T + 2.26e5T^{2} \)
67 \( 1 + 888.T + 3.00e5T^{2} \)
71 \( 1 + 570.T + 3.57e5T^{2} \)
73 \( 1 - 664.T + 3.89e5T^{2} \)
79 \( 1 - 221.T + 4.93e5T^{2} \)
83 \( 1 + 740.T + 5.71e5T^{2} \)
89 \( 1 + 895.T + 7.04e5T^{2} \)
97 \( 1 + 705.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.860641993838789179157503624728, −9.401432321201478237954173354092, −8.672163364282609116156840074851, −7.61439807039878510566037161746, −7.00885370213759272305485124284, −6.06679063610586883830871894793, −3.89612041912895302225633650716, −2.79997204150534965615644183962, −1.38253862220376071129854154992, 0, 1.38253862220376071129854154992, 2.79997204150534965615644183962, 3.89612041912895302225633650716, 6.06679063610586883830871894793, 7.00885370213759272305485124284, 7.61439807039878510566037161746, 8.672163364282609116156840074851, 9.401432321201478237954173354092, 9.860641993838789179157503624728

Graph of the $Z$-function along the critical line