L(s) = 1 | + (−1.01 − 0.806i)2-s + (−0.222 + 0.974i)3-s + (−0.0726 − 0.318i)4-s + (−1.73 − 1.41i)5-s + (1.01 − 0.806i)6-s + (−2.96 + 1.86i)7-s + (−1.30 + 2.71i)8-s + (−0.900 − 0.433i)9-s + (0.610 + 2.82i)10-s + (4.30 + 1.50i)11-s + 0.326·12-s + (2.94 + 1.03i)13-s + (4.49 + 0.506i)14-s + (1.76 − 1.37i)15-s + (2.91 − 1.40i)16-s − 7.34i·17-s + ⋯ |
L(s) = 1 | + (−0.715 − 0.570i)2-s + (−0.128 + 0.562i)3-s + (−0.0363 − 0.159i)4-s + (−0.774 − 0.632i)5-s + (0.412 − 0.329i)6-s + (−1.12 + 0.703i)7-s + (−0.461 + 0.958i)8-s + (−0.300 − 0.144i)9-s + (0.193 + 0.894i)10-s + (1.29 + 0.454i)11-s + 0.0942·12-s + (0.818 + 0.286i)13-s + (1.20 + 0.135i)14-s + (0.455 − 0.354i)15-s + (0.729 − 0.351i)16-s − 1.78i·17-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)(0.996+0.0868i)Λ(2−s)
Λ(s)=(=(435s/2ΓC(s+1/2)L(s)(0.996+0.0868i)Λ(1−s)
Degree: |
2 |
Conductor: |
435
= 3⋅5⋅29
|
Sign: |
0.996+0.0868i
|
Analytic conductor: |
3.47349 |
Root analytic conductor: |
1.86373 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ435(247,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 435, ( :1/2), 0.996+0.0868i)
|
Particular Values
L(1) |
≈ |
0.682394−0.0296809i |
L(21) |
≈ |
0.682394−0.0296809i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.222−0.974i)T |
| 5 | 1+(1.73+1.41i)T |
| 29 | 1+(−3.56+4.03i)T |
good | 2 | 1+(1.01+0.806i)T+(0.445+1.94i)T2 |
| 7 | 1+(2.96−1.86i)T+(3.03−6.30i)T2 |
| 11 | 1+(−4.30−1.50i)T+(8.60+6.85i)T2 |
| 13 | 1+(−2.94−1.03i)T+(10.1+8.10i)T2 |
| 17 | 1+7.34iT−17T2 |
| 19 | 1+(−7.34−4.61i)T+(8.24+17.1i)T2 |
| 23 | 1+(2.83+0.319i)T+(22.4+5.11i)T2 |
| 31 | 1+(2.56−0.289i)T+(30.2−6.89i)T2 |
| 37 | 1+(−2.16−1.04i)T+(23.0+28.9i)T2 |
| 41 | 1+(−1.02+1.02i)T−41iT2 |
| 43 | 1+(−6.71−8.41i)T+(−9.56+41.9i)T2 |
| 47 | 1+(1.48−0.717i)T+(29.3−36.7i)T2 |
| 53 | 1+(−1.03−9.15i)T+(−51.6+11.7i)T2 |
| 59 | 1−5.26iT−59T2 |
| 61 | 1+(−2.95+1.85i)T+(26.4−54.9i)T2 |
| 67 | 1+(−1.61+0.565i)T+(52.3−41.7i)T2 |
| 71 | 1+(−2.50−5.21i)T+(−44.2+55.5i)T2 |
| 73 | 1+(−2.64+2.10i)T+(16.2−71.1i)T2 |
| 79 | 1+(6.21−2.17i)T+(61.7−49.2i)T2 |
| 83 | 1+(−12.9−8.11i)T+(36.0+74.7i)T2 |
| 89 | 1+(0.663+5.89i)T+(−86.7+19.8i)T2 |
| 97 | 1+(−2.29−10.0i)T+(−87.3+42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.26311310401370525131349471182, −9.851137539080215937851616648010, −9.422231739551016733627316227097, −8.938579593721907588304895003835, −7.72171718714232037563347740023, −6.31392287607449597667598589308, −5.37115083463936301507680344055, −4.11187790813832812710876022426, −2.96049433477573023494131066366, −1.03420909586196436672030533221,
0.77307159473631679681489060558, 3.40684364144982076730562836904, 3.78347023144170653454353395347, 6.10826952760700630615326915634, 6.70340241087846672369078559162, 7.37430125586133399112942322919, 8.306775992300551551281548113156, 9.113730125597579438596352471401, 10.16856198953398775563290604659, 11.11696041449492555936107015452