Properties

Label 2-504-1.1-c1-0-2
Degree $2$
Conductor $504$
Sign $1$
Analytic cond. $4.02446$
Root an. cond. $2.00610$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s + 2·11-s + 2·13-s + 6·17-s − 4·19-s + 6·23-s − 25-s − 4·31-s − 2·35-s + 10·37-s + 2·41-s − 4·43-s + 4·47-s + 49-s − 12·53-s + 4·55-s + 12·59-s + 6·61-s + 4·65-s − 4·67-s − 14·71-s − 2·73-s − 2·77-s − 8·79-s − 16·83-s + 12·85-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s + 0.603·11-s + 0.554·13-s + 1.45·17-s − 0.917·19-s + 1.25·23-s − 1/5·25-s − 0.718·31-s − 0.338·35-s + 1.64·37-s + 0.312·41-s − 0.609·43-s + 0.583·47-s + 1/7·49-s − 1.64·53-s + 0.539·55-s + 1.56·59-s + 0.768·61-s + 0.496·65-s − 0.488·67-s − 1.66·71-s − 0.234·73-s − 0.227·77-s − 0.900·79-s − 1.75·83-s + 1.30·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(504\)    =    \(2^{3} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(4.02446\)
Root analytic conductor: \(2.00610\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 504,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.698425554\)
\(L(\frac12)\) \(\approx\) \(1.698425554\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 14 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.84603417852077997548476185489, −9.915934682408437918756969494868, −9.302111474223371601690156394253, −8.348093232759484287064194714284, −7.16759940438630821447644837255, −6.18921559649042192845851641510, −5.50301216544551056360312768488, −4.10502926185056205242132098716, −2.88871942698849130206456913367, −1.38744136941764418419874219848, 1.38744136941764418419874219848, 2.88871942698849130206456913367, 4.10502926185056205242132098716, 5.50301216544551056360312768488, 6.18921559649042192845851641510, 7.16759940438630821447644837255, 8.348093232759484287064194714284, 9.302111474223371601690156394253, 9.915934682408437918756969494868, 10.84603417852077997548476185489

Graph of the $Z$-function along the critical line