Properties

Label 2-5202-1.1-c1-0-35
Degree $2$
Conductor $5202$
Sign $1$
Analytic cond. $41.5381$
Root an. cond. $6.44501$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·5-s + 4·7-s − 8-s + 3·10-s + 3·11-s + 2·13-s − 4·14-s + 16-s + 8·19-s − 3·20-s − 3·22-s + 6·23-s + 4·25-s − 2·26-s + 4·28-s + 3·29-s + 7·31-s − 32-s − 12·35-s − 8·37-s − 8·38-s + 3·40-s + 6·41-s − 4·43-s + 3·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.34·5-s + 1.51·7-s − 0.353·8-s + 0.948·10-s + 0.904·11-s + 0.554·13-s − 1.06·14-s + 1/4·16-s + 1.83·19-s − 0.670·20-s − 0.639·22-s + 1.25·23-s + 4/5·25-s − 0.392·26-s + 0.755·28-s + 0.557·29-s + 1.25·31-s − 0.176·32-s − 2.02·35-s − 1.31·37-s − 1.29·38-s + 0.474·40-s + 0.937·41-s − 0.609·43-s + 0.452·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5202 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5202\)    =    \(2 \cdot 3^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(41.5381\)
Root analytic conductor: \(6.44501\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5202,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.658447503\)
\(L(\frac12)\) \(\approx\) \(1.658447503\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
17 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 7 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + 15 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 - T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.235178303377333794500016101573, −7.50963224871798970165971124923, −7.21386475613061496824087437437, −6.20573888458528416164034907418, −5.15578659679404072792425092812, −4.53682872021803001666891978218, −3.67106318635667668728499397153, −2.88584426553706329935745966433, −1.45284542183315962793965839781, −0.899228488521222409797104317853, 0.899228488521222409797104317853, 1.45284542183315962793965839781, 2.88584426553706329935745966433, 3.67106318635667668728499397153, 4.53682872021803001666891978218, 5.15578659679404072792425092812, 6.20573888458528416164034907418, 7.21386475613061496824087437437, 7.50963224871798970165971124923, 8.235178303377333794500016101573

Graph of the $Z$-function along the critical line