L(s) = 1 | − 1.30·2-s + 3-s − 0.302·4-s − 1.30·6-s + 7-s + 3·8-s + 9-s − 3·11-s − 0.302·12-s + 4.60·13-s − 1.30·14-s − 3.30·16-s − 2.60·17-s − 1.30·18-s − 0.605·19-s + 21-s + 3.90·22-s + 8.21·23-s + 3·24-s − 6·26-s + 27-s − 0.302·28-s − 0.394·29-s + 7.21·31-s − 1.69·32-s − 3·33-s + 3.39·34-s + ⋯ |
L(s) = 1 | − 0.921·2-s + 0.577·3-s − 0.151·4-s − 0.531·6-s + 0.377·7-s + 1.06·8-s + 0.333·9-s − 0.904·11-s − 0.0874·12-s + 1.27·13-s − 0.348·14-s − 0.825·16-s − 0.631·17-s − 0.307·18-s − 0.138·19-s + 0.218·21-s + 0.833·22-s + 1.71·23-s + 0.612·24-s − 1.17·26-s + 0.192·27-s − 0.0572·28-s − 0.0732·29-s + 1.29·31-s − 0.300·32-s − 0.522·33-s + 0.582·34-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(525s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.050980385 |
L(21) |
≈ |
1.050980385 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 7 | 1−T |
good | 2 | 1+1.30T+2T2 |
| 11 | 1+3T+11T2 |
| 13 | 1−4.60T+13T2 |
| 17 | 1+2.60T+17T2 |
| 19 | 1+0.605T+19T2 |
| 23 | 1−8.21T+23T2 |
| 29 | 1+0.394T+29T2 |
| 31 | 1−7.21T+31T2 |
| 37 | 1−10.2T+37T2 |
| 41 | 1+41T2 |
| 43 | 1−2.39T+43T2 |
| 47 | 1−3.39T+47T2 |
| 53 | 1+11.2T+53T2 |
| 59 | 1+3.39T+59T2 |
| 61 | 1−13.2T+61T2 |
| 67 | 1−8.39T+67T2 |
| 71 | 1+3T+71T2 |
| 73 | 1+6.60T+73T2 |
| 79 | 1−6.81T+79T2 |
| 83 | 1−11.2T+83T2 |
| 89 | 1+13.8T+89T2 |
| 97 | 1+15.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79780919306747793069880154372, −9.793335438532053116002002357886, −8.966703555107316466281600066345, −8.318211282096011046886671201429, −7.67393818503279158702144974855, −6.54179657572404628384987199966, −5.10049332802200492366671889537, −4.12608966068775967928571524911, −2.65940509197039901278093412004, −1.12404555162790709900654244864,
1.12404555162790709900654244864, 2.65940509197039901278093412004, 4.12608966068775967928571524911, 5.10049332802200492366671889537, 6.54179657572404628384987199966, 7.67393818503279158702144974855, 8.318211282096011046886671201429, 8.966703555107316466281600066345, 9.793335438532053116002002357886, 10.79780919306747793069880154372