Properties

Label 2-525-1.1-c1-0-3
Degree $2$
Conductor $525$
Sign $1$
Analytic cond. $4.19214$
Root an. cond. $2.04747$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.30·2-s + 3-s − 0.302·4-s − 1.30·6-s + 7-s + 3·8-s + 9-s − 3·11-s − 0.302·12-s + 4.60·13-s − 1.30·14-s − 3.30·16-s − 2.60·17-s − 1.30·18-s − 0.605·19-s + 21-s + 3.90·22-s + 8.21·23-s + 3·24-s − 6·26-s + 27-s − 0.302·28-s − 0.394·29-s + 7.21·31-s − 1.69·32-s − 3·33-s + 3.39·34-s + ⋯
L(s)  = 1  − 0.921·2-s + 0.577·3-s − 0.151·4-s − 0.531·6-s + 0.377·7-s + 1.06·8-s + 0.333·9-s − 0.904·11-s − 0.0874·12-s + 1.27·13-s − 0.348·14-s − 0.825·16-s − 0.631·17-s − 0.307·18-s − 0.138·19-s + 0.218·21-s + 0.833·22-s + 1.71·23-s + 0.612·24-s − 1.17·26-s + 0.192·27-s − 0.0572·28-s − 0.0732·29-s + 1.29·31-s − 0.300·32-s − 0.522·33-s + 0.582·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(4.19214\)
Root analytic conductor: \(2.04747\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 525,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.050980385\)
\(L(\frac12)\) \(\approx\) \(1.050980385\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
good2 \( 1 + 1.30T + 2T^{2} \)
11 \( 1 + 3T + 11T^{2} \)
13 \( 1 - 4.60T + 13T^{2} \)
17 \( 1 + 2.60T + 17T^{2} \)
19 \( 1 + 0.605T + 19T^{2} \)
23 \( 1 - 8.21T + 23T^{2} \)
29 \( 1 + 0.394T + 29T^{2} \)
31 \( 1 - 7.21T + 31T^{2} \)
37 \( 1 - 10.2T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 - 2.39T + 43T^{2} \)
47 \( 1 - 3.39T + 47T^{2} \)
53 \( 1 + 11.2T + 53T^{2} \)
59 \( 1 + 3.39T + 59T^{2} \)
61 \( 1 - 13.2T + 61T^{2} \)
67 \( 1 - 8.39T + 67T^{2} \)
71 \( 1 + 3T + 71T^{2} \)
73 \( 1 + 6.60T + 73T^{2} \)
79 \( 1 - 6.81T + 79T^{2} \)
83 \( 1 - 11.2T + 83T^{2} \)
89 \( 1 + 13.8T + 89T^{2} \)
97 \( 1 + 15.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79780919306747793069880154372, −9.793335438532053116002002357886, −8.966703555107316466281600066345, −8.318211282096011046886671201429, −7.67393818503279158702144974855, −6.54179657572404628384987199966, −5.10049332802200492366671889537, −4.12608966068775967928571524911, −2.65940509197039901278093412004, −1.12404555162790709900654244864, 1.12404555162790709900654244864, 2.65940509197039901278093412004, 4.12608966068775967928571524911, 5.10049332802200492366671889537, 6.54179657572404628384987199966, 7.67393818503279158702144974855, 8.318211282096011046886671201429, 8.966703555107316466281600066345, 9.793335438532053116002002357886, 10.79780919306747793069880154372

Graph of the $Z$-function along the critical line