Properties

Label 2-5760-1.1-c1-0-40
Degree $2$
Conductor $5760$
Sign $1$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 5.12·7-s + 4·11-s − 1.12·13-s − 7.12·17-s + 7.12·19-s − 3.12·23-s + 25-s + 2·29-s + 5.12·31-s + 5.12·35-s − 5.12·37-s + 10.2·41-s − 4·43-s + 3.12·47-s + 19.2·49-s − 4.24·53-s + 4·55-s − 6.24·59-s + 6·61-s − 1.12·65-s − 8·67-s + 6.24·71-s + 8.24·73-s + 20.4·77-s + 6.87·79-s − 12·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.93·7-s + 1.20·11-s − 0.311·13-s − 1.72·17-s + 1.63·19-s − 0.651·23-s + 0.200·25-s + 0.371·29-s + 0.920·31-s + 0.865·35-s − 0.842·37-s + 1.60·41-s − 0.609·43-s + 0.455·47-s + 2.74·49-s − 0.583·53-s + 0.539·55-s − 0.813·59-s + 0.768·61-s − 0.139·65-s − 0.977·67-s + 0.741·71-s + 0.965·73-s + 2.33·77-s + 0.773·79-s − 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.147975296\)
\(L(\frac12)\) \(\approx\) \(3.147975296\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 5.12T + 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 + 1.12T + 13T^{2} \)
17 \( 1 + 7.12T + 17T^{2} \)
19 \( 1 - 7.12T + 19T^{2} \)
23 \( 1 + 3.12T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 - 5.12T + 31T^{2} \)
37 \( 1 + 5.12T + 37T^{2} \)
41 \( 1 - 10.2T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 - 3.12T + 47T^{2} \)
53 \( 1 + 4.24T + 53T^{2} \)
59 \( 1 + 6.24T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 8T + 67T^{2} \)
71 \( 1 - 6.24T + 71T^{2} \)
73 \( 1 - 8.24T + 73T^{2} \)
79 \( 1 - 6.87T + 79T^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 - 14.2T + 89T^{2} \)
97 \( 1 + 8.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.122359927086181160272342408745, −7.45996360025344498794233633784, −6.72850411954182338407745959028, −5.96192894528235628719187508460, −5.07127723678723499096172500593, −4.59482573396637985572905968822, −3.86324922356266428134655286857, −2.56931065586988481134971726019, −1.79047949587263233835795232491, −1.03490118175612065436050553479, 1.03490118175612065436050553479, 1.79047949587263233835795232491, 2.56931065586988481134971726019, 3.86324922356266428134655286857, 4.59482573396637985572905968822, 5.07127723678723499096172500593, 5.96192894528235628719187508460, 6.72850411954182338407745959028, 7.45996360025344498794233633784, 8.122359927086181160272342408745

Graph of the $Z$-function along the critical line