L(s) = 1 | + (−0.222 + 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.781 + 0.623i)5-s + (0.623 − 0.781i)8-s + (−0.623 + 0.781i)9-s + (−0.433 − 0.900i)10-s + (−0.211 + 1.87i)13-s + (0.623 + 0.781i)16-s − 1.94·17-s + (−0.623 − 0.781i)18-s + (0.974 − 0.222i)20-s + (0.222 − 0.974i)25-s + (−1.78 − 0.623i)26-s + (0.781 − 0.623i)29-s + (−0.900 + 0.433i)32-s + ⋯ |
L(s) = 1 | + (−0.222 + 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.781 + 0.623i)5-s + (0.623 − 0.781i)8-s + (−0.623 + 0.781i)9-s + (−0.433 − 0.900i)10-s + (−0.211 + 1.87i)13-s + (0.623 + 0.781i)16-s − 1.94·17-s + (−0.623 − 0.781i)18-s + (0.974 − 0.222i)20-s + (0.222 − 0.974i)25-s + (−1.78 − 0.623i)26-s + (0.781 − 0.623i)29-s + (−0.900 + 0.433i)32-s + ⋯ |
Λ(s)=(=(580s/2ΓC(s)L(s)(−0.968−0.249i)Λ(1−s)
Λ(s)=(=(580s/2ΓC(s)L(s)(−0.968−0.249i)Λ(1−s)
Degree: |
2 |
Conductor: |
580
= 22⋅5⋅29
|
Sign: |
−0.968−0.249i
|
Analytic conductor: |
0.289457 |
Root analytic conductor: |
0.538012 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ580(367,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 580, ( :0), −0.968−0.249i)
|
Particular Values
L(21) |
≈ |
0.4846324991 |
L(21) |
≈ |
0.4846324991 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.222−0.974i)T |
| 5 | 1+(0.781−0.623i)T |
| 29 | 1+(−0.781+0.623i)T |
good | 3 | 1+(0.623−0.781i)T2 |
| 7 | 1+(−0.781−0.623i)T2 |
| 11 | 1+(−0.974−0.222i)T2 |
| 13 | 1+(0.211−1.87i)T+(−0.974−0.222i)T2 |
| 17 | 1+1.94T+T2 |
| 19 | 1+(0.781−0.623i)T2 |
| 23 | 1+(−0.433−0.900i)T2 |
| 31 | 1+(0.433−0.900i)T2 |
| 37 | 1+(−1.40−1.12i)T+(0.222+0.974i)T2 |
| 41 | 1+(0.467+0.467i)T+iT2 |
| 43 | 1+(−0.900+0.433i)T2 |
| 47 | 1+(−0.222+0.974i)T2 |
| 53 | 1+(−0.900−1.43i)T+(−0.433+0.900i)T2 |
| 59 | 1+T2 |
| 61 | 1+(−0.351+1.00i)T+(−0.781−0.623i)T2 |
| 67 | 1+(0.974−0.222i)T2 |
| 71 | 1+(−0.222+0.974i)T2 |
| 73 | 1+(0.0990+0.433i)T+(−0.900+0.433i)T2 |
| 79 | 1+(−0.974+0.222i)T2 |
| 83 | 1+(−0.781+0.623i)T2 |
| 89 | 1+(−0.189+0.119i)T+(0.433−0.900i)T2 |
| 97 | 1+(0.376−0.781i)T+(−0.623−0.781i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.25002038462285750514454982661, −10.46836668788487525883502769882, −9.268151318834020937581226650674, −8.594963264572199101342003984695, −7.72229537938440201349109507118, −6.81638554299650766725216065758, −6.25426870938917399033602132525, −4.71764232881393486617445841441, −4.17026859678566591925847017438, −2.38262773568938247456531005224,
0.61338527950195630376983616365, 2.61365083104518836960731173802, 3.64511257994978781940458063528, 4.65033923956529695029546505796, 5.67026550816406635703881562448, 7.17276357695629184802268790366, 8.347014758150795561211928628421, 8.674915888081359923737009468550, 9.679861803907951591944330775340, 10.70552856138889021371757183155