L(s) = 1 | + (−0.222 + 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.781 + 0.623i)5-s + (0.623 − 0.781i)8-s + (−0.623 + 0.781i)9-s + (−0.433 − 0.900i)10-s + (−0.211 + 1.87i)13-s + (0.623 + 0.781i)16-s − 1.94·17-s + (−0.623 − 0.781i)18-s + (0.974 − 0.222i)20-s + (0.222 − 0.974i)25-s + (−1.78 − 0.623i)26-s + (0.781 − 0.623i)29-s + (−0.900 + 0.433i)32-s + ⋯ |
L(s) = 1 | + (−0.222 + 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.781 + 0.623i)5-s + (0.623 − 0.781i)8-s + (−0.623 + 0.781i)9-s + (−0.433 − 0.900i)10-s + (−0.211 + 1.87i)13-s + (0.623 + 0.781i)16-s − 1.94·17-s + (−0.623 − 0.781i)18-s + (0.974 − 0.222i)20-s + (0.222 − 0.974i)25-s + (−1.78 − 0.623i)26-s + (0.781 − 0.623i)29-s + (−0.900 + 0.433i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.968 - 0.249i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.968 - 0.249i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4846324991\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4846324991\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.222 - 0.974i)T \) |
| 5 | \( 1 + (0.781 - 0.623i)T \) |
| 29 | \( 1 + (-0.781 + 0.623i)T \) |
good | 3 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 7 | \( 1 + (-0.781 - 0.623i)T^{2} \) |
| 11 | \( 1 + (-0.974 - 0.222i)T^{2} \) |
| 13 | \( 1 + (0.211 - 1.87i)T + (-0.974 - 0.222i)T^{2} \) |
| 17 | \( 1 + 1.94T + T^{2} \) |
| 19 | \( 1 + (0.781 - 0.623i)T^{2} \) |
| 23 | \( 1 + (-0.433 - 0.900i)T^{2} \) |
| 31 | \( 1 + (0.433 - 0.900i)T^{2} \) |
| 37 | \( 1 + (-1.40 - 1.12i)T + (0.222 + 0.974i)T^{2} \) |
| 41 | \( 1 + (0.467 + 0.467i)T + iT^{2} \) |
| 43 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 47 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 53 | \( 1 + (-0.900 - 1.43i)T + (-0.433 + 0.900i)T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + (-0.351 + 1.00i)T + (-0.781 - 0.623i)T^{2} \) |
| 67 | \( 1 + (0.974 - 0.222i)T^{2} \) |
| 71 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (0.0990 + 0.433i)T + (-0.900 + 0.433i)T^{2} \) |
| 79 | \( 1 + (-0.974 + 0.222i)T^{2} \) |
| 83 | \( 1 + (-0.781 + 0.623i)T^{2} \) |
| 89 | \( 1 + (-0.189 + 0.119i)T + (0.433 - 0.900i)T^{2} \) |
| 97 | \( 1 + (0.376 - 0.781i)T + (-0.623 - 0.781i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.25002038462285750514454982661, −10.46836668788487525883502769882, −9.268151318834020937581226650674, −8.594963264572199101342003984695, −7.72229537938440201349109507118, −6.81638554299650766725216065758, −6.25426870938917399033602132525, −4.71764232881393486617445841441, −4.17026859678566591925847017438, −2.38262773568938247456531005224,
0.61338527950195630376983616365, 2.61365083104518836960731173802, 3.64511257994978781940458063528, 4.65033923956529695029546505796, 5.67026550816406635703881562448, 7.17276357695629184802268790366, 8.347014758150795561211928628421, 8.674915888081359923737009468550, 9.679861803907951591944330775340, 10.70552856138889021371757183155