L(s) = 1 | + 3-s + 9-s + 4·11-s + 2·13-s − 2·17-s − 4·19-s + 8·23-s + 27-s + 6·29-s + 8·31-s + 4·33-s − 6·37-s + 2·39-s − 6·41-s − 4·43-s − 7·49-s − 2·51-s + 2·53-s − 4·57-s + 4·59-s − 2·61-s + 4·67-s + 8·69-s + 8·71-s − 10·73-s − 8·79-s + 81-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/3·9-s + 1.20·11-s + 0.554·13-s − 0.485·17-s − 0.917·19-s + 1.66·23-s + 0.192·27-s + 1.11·29-s + 1.43·31-s + 0.696·33-s − 0.986·37-s + 0.320·39-s − 0.937·41-s − 0.609·43-s − 49-s − 0.280·51-s + 0.274·53-s − 0.529·57-s + 0.520·59-s − 0.256·61-s + 0.488·67-s + 0.963·69-s + 0.949·71-s − 1.17·73-s − 0.900·79-s + 1/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.928846232\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.928846232\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 - 8 T + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63029344891647763107725042646, −9.703395692631468853448056916432, −8.738054065213463721777507480749, −8.362573092386573492350464456460, −6.88451958096732153826690211844, −6.46625691967373786218224646311, −4.93489655467566708723346193761, −3.96665802174365669665598466984, −2.86970638476716148313728818699, −1.38738099288330045270314903054,
1.38738099288330045270314903054, 2.86970638476716148313728818699, 3.96665802174365669665598466984, 4.93489655467566708723346193761, 6.46625691967373786218224646311, 6.88451958096732153826690211844, 8.362573092386573492350464456460, 8.738054065213463721777507480749, 9.703395692631468853448056916432, 10.63029344891647763107725042646