Properties

Label 2-600-1.1-c1-0-4
Degree $2$
Conductor $600$
Sign $1$
Analytic cond. $4.79102$
Root an. cond. $2.18884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 4·11-s + 2·13-s − 2·17-s − 4·19-s + 8·23-s + 27-s + 6·29-s + 8·31-s + 4·33-s − 6·37-s + 2·39-s − 6·41-s − 4·43-s − 7·49-s − 2·51-s + 2·53-s − 4·57-s + 4·59-s − 2·61-s + 4·67-s + 8·69-s + 8·71-s − 10·73-s − 8·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 1.20·11-s + 0.554·13-s − 0.485·17-s − 0.917·19-s + 1.66·23-s + 0.192·27-s + 1.11·29-s + 1.43·31-s + 0.696·33-s − 0.986·37-s + 0.320·39-s − 0.937·41-s − 0.609·43-s − 49-s − 0.280·51-s + 0.274·53-s − 0.529·57-s + 0.520·59-s − 0.256·61-s + 0.488·67-s + 0.963·69-s + 0.949·71-s − 1.17·73-s − 0.900·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(4.79102\)
Root analytic conductor: \(2.18884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.928846232\)
\(L(\frac12)\) \(\approx\) \(1.928846232\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.63029344891647763107725042646, −9.703395692631468853448056916432, −8.738054065213463721777507480749, −8.362573092386573492350464456460, −6.88451958096732153826690211844, −6.46625691967373786218224646311, −4.93489655467566708723346193761, −3.96665802174365669665598466984, −2.86970638476716148313728818699, −1.38738099288330045270314903054, 1.38738099288330045270314903054, 2.86970638476716148313728818699, 3.96665802174365669665598466984, 4.93489655467566708723346193761, 6.46625691967373786218224646311, 6.88451958096732153826690211844, 8.362573092386573492350464456460, 8.738054065213463721777507480749, 9.703395692631468853448056916432, 10.63029344891647763107725042646

Graph of the $Z$-function along the critical line