L(s) = 1 | − 0.718i·2-s + (−0.271 + 1.71i)3-s + 1.48·4-s + (−0.723 + 1.25i)5-s + (1.22 + 0.194i)6-s + (0.182 − 2.63i)7-s − 2.50i·8-s + (−2.85 − 0.928i)9-s + (0.900 + 0.519i)10-s + (−1.55 + 0.900i)11-s + (−0.402 + 2.53i)12-s + (−1.88 + 1.09i)13-s + (−1.89 − 0.131i)14-s + (−1.94 − 1.57i)15-s + 1.17·16-s + (1.95 − 3.38i)17-s + ⋯ |
L(s) = 1 | − 0.507i·2-s + (−0.156 + 0.987i)3-s + 0.742·4-s + (−0.323 + 0.560i)5-s + (0.501 + 0.0795i)6-s + (0.0690 − 0.997i)7-s − 0.884i·8-s + (−0.950 − 0.309i)9-s + (0.284 + 0.164i)10-s + (−0.470 + 0.271i)11-s + (−0.116 + 0.732i)12-s + (−0.523 + 0.302i)13-s + (−0.506 − 0.0350i)14-s + (−0.502 − 0.407i)15-s + 0.292·16-s + (0.473 − 0.820i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0917i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 - 0.0917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.914825 + 0.0420690i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.914825 + 0.0420690i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.271 - 1.71i)T \) |
| 7 | \( 1 + (-0.182 + 2.63i)T \) |
good | 2 | \( 1 + 0.718iT - 2T^{2} \) |
| 5 | \( 1 + (0.723 - 1.25i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.55 - 0.900i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.88 - 1.09i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.95 + 3.38i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.47 - 2.00i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.91 + 2.83i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-8.49 - 4.90i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.83iT - 31T^{2} \) |
| 37 | \( 1 + (0.411 + 0.713i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.90 - 10.2i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.76 - 6.52i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 2.33T + 47T^{2} \) |
| 53 | \( 1 + (-0.996 - 0.575i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 9.79T + 59T^{2} \) |
| 61 | \( 1 + 2.35iT - 61T^{2} \) |
| 67 | \( 1 + 0.312T + 67T^{2} \) |
| 71 | \( 1 + 1.94iT - 71T^{2} \) |
| 73 | \( 1 + (-2.42 - 1.40i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 12.4T + 79T^{2} \) |
| 83 | \( 1 + (-3.60 + 6.25i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (5.28 + 9.16i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (13.4 + 7.75i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.02026941983057947543156877926, −14.17068657165005537192028540102, −12.44332527169284560633119138503, −11.33650829746031927175453237562, −10.51957756423327756118641700459, −9.807109603796577538972840290133, −7.79155191601275371019979796625, −6.50215961477640088728777173348, −4.48496838686024492767822769391, −3.02204049518623848062583585208,
2.39052595582068207189811341940, 5.39417103548898093044767210448, 6.40919032910134293614382460462, 7.86554857064290669411125710669, 8.542228722404626247327679687954, 10.65590264917666061779785788281, 12.07486583161329388526711227550, 12.37866947532855836661466599713, 13.92472750419476772380818830785, 15.15134808670102400337966167066