L(s) = 1 | + (0.868 + 2.67i)3-s + (0.809 + 0.587i)5-s + (−0.318 + 0.980i)7-s + (−3.96 + 2.88i)9-s + (−1.93 − 2.69i)11-s + (−2.79 + 2.02i)13-s + (−0.868 + 2.67i)15-s + (−1.94 − 1.40i)17-s + (2.36 + 7.29i)19-s − 2.89·21-s − 2.45·23-s + (0.309 + 0.951i)25-s + (−4.33 − 3.14i)27-s + (−1.83 + 5.66i)29-s + (−2.98 + 2.16i)31-s + ⋯ |
L(s) = 1 | + (0.501 + 1.54i)3-s + (0.361 + 0.262i)5-s + (−0.120 + 0.370i)7-s + (−1.32 + 0.961i)9-s + (−0.583 − 0.811i)11-s + (−0.773 + 0.562i)13-s + (−0.224 + 0.690i)15-s + (−0.470 − 0.341i)17-s + (0.543 + 1.67i)19-s − 0.632·21-s − 0.512·23-s + (0.0618 + 0.190i)25-s + (−0.833 − 0.605i)27-s + (−0.341 + 1.05i)29-s + (−0.535 + 0.389i)31-s + ⋯ |
Λ(s)=(=(880s/2ΓC(s)L(s)(−0.941−0.335i)Λ(2−s)
Λ(s)=(=(880s/2ΓC(s+1/2)L(s)(−0.941−0.335i)Λ(1−s)
Degree: |
2 |
Conductor: |
880
= 24⋅5⋅11
|
Sign: |
−0.941−0.335i
|
Analytic conductor: |
7.02683 |
Root analytic conductor: |
2.65081 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ880(641,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 880, ( :1/2), −0.941−0.335i)
|
Particular Values
L(1) |
≈ |
0.251064+1.45100i |
L(21) |
≈ |
0.251064+1.45100i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.809−0.587i)T |
| 11 | 1+(1.93+2.69i)T |
good | 3 | 1+(−0.868−2.67i)T+(−2.42+1.76i)T2 |
| 7 | 1+(0.318−0.980i)T+(−5.66−4.11i)T2 |
| 13 | 1+(2.79−2.02i)T+(4.01−12.3i)T2 |
| 17 | 1+(1.94+1.40i)T+(5.25+16.1i)T2 |
| 19 | 1+(−2.36−7.29i)T+(−15.3+11.1i)T2 |
| 23 | 1+2.45T+23T2 |
| 29 | 1+(1.83−5.66i)T+(−23.4−17.0i)T2 |
| 31 | 1+(2.98−2.16i)T+(9.57−29.4i)T2 |
| 37 | 1+(−1.84+5.66i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−1.21−3.74i)T+(−33.1+24.0i)T2 |
| 43 | 1−7.64T+43T2 |
| 47 | 1+(1.80+5.55i)T+(−38.0+27.6i)T2 |
| 53 | 1+(−9.58+6.96i)T+(16.3−50.4i)T2 |
| 59 | 1+(0.910−2.80i)T+(−47.7−34.6i)T2 |
| 61 | 1+(2.00+1.45i)T+(18.8+58.0i)T2 |
| 67 | 1−6.14T+67T2 |
| 71 | 1+(−1.63−1.18i)T+(21.9+67.5i)T2 |
| 73 | 1+(0.255−0.785i)T+(−59.0−42.9i)T2 |
| 79 | 1+(9.77−7.09i)T+(24.4−75.1i)T2 |
| 83 | 1+(−1.30−0.946i)T+(25.6+78.9i)T2 |
| 89 | 1−8.16T+89T2 |
| 97 | 1+(1.97−1.43i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37011072474786469907015110235, −9.670727629197267511422265890478, −9.062771064219477536108743239902, −8.267113648740554380299992445268, −7.20772259636429414698646626657, −5.81374940264983587276769085223, −5.25777701286262496021250972736, −4.11172224995221627346444682822, −3.27869797593987076232954429755, −2.26810184678963567269061836016,
0.63046740337158463986626242252, 2.10379146800534435647610295489, 2.74678421671360840190480098910, 4.39989256130125828170721038239, 5.52868370431480361192987219402, 6.54458704235128869802665333661, 7.40785715075132343221326848641, 7.73810518220014245695593135342, 8.837954326806085534444966365795, 9.618804272841441442680022123739