Properties

Label 2-891-1.1-c1-0-8
Degree $2$
Conductor $891$
Sign $1$
Analytic cond. $7.11467$
Root an. cond. $2.66733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3·5-s − 4·7-s − 11-s + 2·13-s + 4·16-s + 6·17-s + 2·19-s − 6·20-s − 3·23-s + 4·25-s + 8·28-s + 6·29-s + 8·31-s − 12·35-s + 2·37-s + 8·43-s + 2·44-s − 3·47-s + 9·49-s − 4·52-s − 3·53-s − 3·55-s + 8·61-s − 8·64-s + 6·65-s − 13·67-s + ⋯
L(s)  = 1  − 4-s + 1.34·5-s − 1.51·7-s − 0.301·11-s + 0.554·13-s + 16-s + 1.45·17-s + 0.458·19-s − 1.34·20-s − 0.625·23-s + 4/5·25-s + 1.51·28-s + 1.11·29-s + 1.43·31-s − 2.02·35-s + 0.328·37-s + 1.21·43-s + 0.301·44-s − 0.437·47-s + 9/7·49-s − 0.554·52-s − 0.412·53-s − 0.404·55-s + 1.02·61-s − 64-s + 0.744·65-s − 1.58·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(891\)    =    \(3^{4} \cdot 11\)
Sign: $1$
Analytic conductor: \(7.11467\)
Root analytic conductor: \(2.66733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 891,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.382930520\)
\(L(\frac12)\) \(\approx\) \(1.382930520\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 + T \)
good2 \( 1 + p T^{2} \)
5 \( 1 - 3 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 13 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 - 18 T + p T^{2} \)
89 \( 1 + 3 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.944381223757953089753372944188, −9.543697124721827346113055813271, −8.666250032155508275985322036872, −7.67579797116786415531719850377, −6.28320198661316535576204964999, −5.93548013183253829968096634124, −4.94627004773663169249134422915, −3.64232856897985226857412108530, −2.75315253823480622918526608173, −0.985102124491110264282669993364, 0.985102124491110264282669993364, 2.75315253823480622918526608173, 3.64232856897985226857412108530, 4.94627004773663169249134422915, 5.93548013183253829968096634124, 6.28320198661316535576204964999, 7.67579797116786415531719850377, 8.666250032155508275985322036872, 9.543697124721827346113055813271, 9.944381223757953089753372944188

Graph of the $Z$-function along the critical line