L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.707 + 0.707i)5-s + (−1 − i)7-s − 1.00i·9-s − 1.41i·11-s − 1.00i·15-s + 1.41·21-s − 1.00i·25-s + (0.707 + 0.707i)27-s − 1.41i·29-s + (1.00 + 1.00i)33-s + 1.41·35-s + (0.707 + 0.707i)45-s + i·49-s + (−1.41 − 1.41i)53-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.707 + 0.707i)5-s + (−1 − i)7-s − 1.00i·9-s − 1.41i·11-s − 1.00i·15-s + 1.41·21-s − 1.00i·25-s + (0.707 + 0.707i)27-s − 1.41i·29-s + (1.00 + 1.00i)33-s + 1.41·35-s + (0.707 + 0.707i)45-s + i·49-s + (−1.41 − 1.41i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4121616081\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4121616081\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
good | 7 | \( 1 + (1 + i)T + iT^{2} \) |
| 11 | \( 1 + 1.41iT - T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + 1.41iT - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 59 | \( 1 + 1.41T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (1 + i)T + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (1 - i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19048561541531564472396213365, −9.497752166396538145735674479316, −8.376009124828956151724252789596, −7.40413740577371857177523711192, −6.45328345462200126512332886374, −5.98651646807274834141218568921, −4.57888716449978539701770448898, −3.66559386123698103083288515228, −3.12961762722282852526811288830, −0.43406240891863601879244889421,
1.63671808758740279470374265084, 2.97122021121797226514391073316, 4.44035228393569833582695394968, 5.23037029087958850839305820986, 6.15564799367901701608401138345, 7.04614727082797716696462624221, 7.72860544172485611019105759924, 8.788144031158073430955137884716, 9.466643786857875089208930327978, 10.44823527644084265993014830073