Properties

Label 2-968-1.1-c1-0-5
Degree $2$
Conductor $968$
Sign $1$
Analytic cond. $7.72951$
Root an. cond. $2.78020$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.56·3-s + 3.56·5-s − 3.12·7-s − 0.561·9-s + 5.12·13-s − 5.56·15-s − 2·17-s + 4·19-s + 4.87·21-s + 2.43·23-s + 7.68·25-s + 5.56·27-s + 5.12·29-s − 5.56·31-s − 11.1·35-s − 7.56·37-s − 8·39-s + 1.12·41-s + 7.12·43-s − 2·45-s + 8·47-s + 2.75·49-s + 3.12·51-s + 12.2·53-s − 6.24·57-s + 7.80·59-s − 1.12·61-s + ⋯
L(s)  = 1  − 0.901·3-s + 1.59·5-s − 1.18·7-s − 0.187·9-s + 1.42·13-s − 1.43·15-s − 0.485·17-s + 0.917·19-s + 1.06·21-s + 0.508·23-s + 1.53·25-s + 1.07·27-s + 0.951·29-s − 0.998·31-s − 1.88·35-s − 1.24·37-s − 1.28·39-s + 0.175·41-s + 1.08·43-s − 0.298·45-s + 1.16·47-s + 0.393·49-s + 0.437·51-s + 1.68·53-s − 0.827·57-s + 1.01·59-s − 0.143·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(968\)    =    \(2^{3} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(7.72951\)
Root analytic conductor: \(2.78020\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 968,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.384585135\)
\(L(\frac12)\) \(\approx\) \(1.384585135\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 + 1.56T + 3T^{2} \)
5 \( 1 - 3.56T + 5T^{2} \)
7 \( 1 + 3.12T + 7T^{2} \)
13 \( 1 - 5.12T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 - 2.43T + 23T^{2} \)
29 \( 1 - 5.12T + 29T^{2} \)
31 \( 1 + 5.56T + 31T^{2} \)
37 \( 1 + 7.56T + 37T^{2} \)
41 \( 1 - 1.12T + 41T^{2} \)
43 \( 1 - 7.12T + 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 - 12.2T + 53T^{2} \)
59 \( 1 - 7.80T + 59T^{2} \)
61 \( 1 + 1.12T + 61T^{2} \)
67 \( 1 - 9.56T + 67T^{2} \)
71 \( 1 + 8.68T + 71T^{2} \)
73 \( 1 + 5.12T + 73T^{2} \)
79 \( 1 - 11.1T + 79T^{2} \)
83 \( 1 + 0.876T + 83T^{2} \)
89 \( 1 - 2.68T + 89T^{2} \)
97 \( 1 - 15.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19755635590132717366414803194, −9.164341463006006017680152376450, −8.771660399983008132430193928192, −7.07560819296462536396012593140, −6.34369526057879782881551196050, −5.82213997211826838360050364415, −5.17664716148707366578576598529, −3.61632211414597521079215968222, −2.50431074557952801149547415729, −0.999881244511981930607956401069, 0.999881244511981930607956401069, 2.50431074557952801149547415729, 3.61632211414597521079215968222, 5.17664716148707366578576598529, 5.82213997211826838360050364415, 6.34369526057879782881551196050, 7.07560819296462536396012593140, 8.771660399983008132430193928192, 9.164341463006006017680152376450, 10.19755635590132717366414803194

Graph of the $Z$-function along the critical line