L(s) = 1 | − 4-s + 2·19-s − 25-s + 2·37-s − 49-s + 67-s − 9·73-s − 2·76-s − 11·79-s + 100-s + 2·103-s − 121-s + 127-s + 131-s + 137-s + 139-s − 2·148-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
L(s) = 1 | − 4-s + 2·19-s − 25-s + 2·37-s − 49-s + 67-s − 9·73-s − 2·76-s − 11·79-s + 100-s + 2·103-s − 121-s + 127-s + 131-s + 137-s + 139-s − 2·148-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
Λ(s)=(=((320⋅6710)s/2ΓC(s)10L(s)Λ(1−s)
Λ(s)=(=((320⋅6710)s/2ΓC(s)10L(s)Λ(1−s)
Particular Values
L(21) |
≈ |
0.2150622103 |
L(21) |
≈ |
0.2150622103 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 67 | 1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10 |
good | 2 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10) |
| 5 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10) |
| 7 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10) |
| 11 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10) |
| 13 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10) |
| 17 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20 |
| 19 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)2 |
| 23 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20 |
| 29 | (1+T2)10 |
| 31 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10) |
| 37 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)2 |
| 41 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10) |
| 43 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10) |
| 47 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20 |
| 53 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10) |
| 59 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20 |
| 61 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10) |
| 71 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20 |
| 73 | (1+T)10(1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10) |
| 79 | (1+T)10(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10) |
| 83 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20 |
| 89 | 1−T2+T4−T6+T8−T10+T12−T14+T16−T18+T20 |
| 97 | (1−T+T2−T3+T4−T5+T6−T7+T8−T9+T10)(1+T+T2+T3+T4+T5+T6+T7+T8+T9+T10) |
show more | |
show less | |
L(s)=p∏ j=1∏20(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.27435616543027688599293677642, −4.21715688595092454354017600332, −4.12594544828655133336517240552, −4.03424171486995322608799756395, −3.96290099593183505446946579415, −3.68242528829453880750944554046, −3.54706420153946336799167714220, −3.33836695661678577911828177385, −3.21771539877576185127359244041, −3.17548301210851036533894362356, −2.94473655255086045954646538007, −2.87802444583166537838806422201, −2.84685167386361119024353477069, −2.76516195765349480175014134749, −2.75672644026665761760217654210, −2.57711630219261795855528040253, −2.32469343134141155024194326993, −1.86849589453599506482216752853, −1.75242890150317825559568806170, −1.75076773683840588523257063324, −1.58868602312400784293260916095, −1.58094450702948420210521010289, −1.29179929140820329567421659301, −1.08167113336342232021338488685, −0.69892488463632954080049801154,
0.69892488463632954080049801154, 1.08167113336342232021338488685, 1.29179929140820329567421659301, 1.58094450702948420210521010289, 1.58868602312400784293260916095, 1.75076773683840588523257063324, 1.75242890150317825559568806170, 1.86849589453599506482216752853, 2.32469343134141155024194326993, 2.57711630219261795855528040253, 2.75672644026665761760217654210, 2.76516195765349480175014134749, 2.84685167386361119024353477069, 2.87802444583166537838806422201, 2.94473655255086045954646538007, 3.17548301210851036533894362356, 3.21771539877576185127359244041, 3.33836695661678577911828177385, 3.54706420153946336799167714220, 3.68242528829453880750944554046, 3.96290099593183505446946579415, 4.03424171486995322608799756395, 4.12594544828655133336517240552, 4.21715688595092454354017600332, 4.27435616543027688599293677642
Plot not available for L-functions of degree greater than 10.